Chinese Journal of Computational Physics ›› 2023, Vol. 40 ›› Issue (6): 742-751.DOI: 10.19596/j.cnki.1001-246x.8684
Previous Articles Next Articles
Guixin LIU(), Zhonghua MA(
)
Received:
2022-12-19
Online:
2023-11-25
Published:
2024-01-22
Contact:
Zhonghua MA
CLC Number:
Guixin LIU, Zhonghua MA. Fault Identification of Post Stack Seismic Data by Improved Unet Network[J]. Chinese Journal of Computational Physics, 2023, 40(6): 742-751.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8684
Train Loss | Val Loss | Epoch | Batchsize | 优化器 | 学习率 | 训练miou | 测试miou | |
Unet | 0.078 | 0.095 | 30 | 16 | AdamW | 0.001 | 0.831 | 0.800 |
Eunet | 0.058 | 0.091 | 30 | 16 | AdamW | 0.001 | 0.873 | 0.801 |
Segnet | 0.055 | 0.069 | 30 | 16 | AdamW | 0.001 | 0.890 | 0.875 |
Unet++ | 0.035 | 0.065 | 30 | 16 | AdamW | 0.001 | 0.911 | 0.904 |
Unet+++ | 0.065 | 0.113 | 30 | 8 | AdamW | 0.001 | 0.848 | 0.749 |
Attention-Unet | 0.055 | 0.076 | 30 | 16 | AdamW | 0.001 | 0.911 | 0.877 |
M-SA-Unet | 0.033 | 0.062 | 30 | 16 | AdamW | 0.001 | 0.914 | 0.882 |
M-SA-Eunet | 0.034 | 0.063 | 30 | 16 | AdamW | 0.001 | 0.926 | 0.911 |
Table 1 Sets and results of parameters in the training and verification process
Train Loss | Val Loss | Epoch | Batchsize | 优化器 | 学习率 | 训练miou | 测试miou | |
Unet | 0.078 | 0.095 | 30 | 16 | AdamW | 0.001 | 0.831 | 0.800 |
Eunet | 0.058 | 0.091 | 30 | 16 | AdamW | 0.001 | 0.873 | 0.801 |
Segnet | 0.055 | 0.069 | 30 | 16 | AdamW | 0.001 | 0.890 | 0.875 |
Unet++ | 0.035 | 0.065 | 30 | 16 | AdamW | 0.001 | 0.911 | 0.904 |
Unet+++ | 0.065 | 0.113 | 30 | 8 | AdamW | 0.001 | 0.848 | 0.749 |
Attention-Unet | 0.055 | 0.076 | 30 | 16 | AdamW | 0.001 | 0.911 | 0.877 |
M-SA-Unet | 0.033 | 0.062 | 30 | 16 | AdamW | 0.001 | 0.914 | 0.882 |
M-SA-Eunet | 0.034 | 0.063 | 30 | 16 | AdamW | 0.001 | 0.926 | 0.911 |
1 |
YUAN Y . Some new progress in the fields of computational petroleum geology and others[J]. Chinese Journal of Computational Physics, 2003, (4): 283- 290.
DOI |
2 | RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 234-241. |
3 | ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial networks[C]//International Conference on Machine Learning. PMLR, 2019: 7354-7363. |
4 | 何易龙, 文晓涛, 王锦涛, 等. 基于3D U-Net++L~3卷积神经网络的断层识别[J]. 地球物理学进展, 2022, 37 (2): 607- 616. |
5 | 芦凤明, 孟瑞刚, 张军华, 等. UNet++和迁移学习相结合的复杂断裂识别方法研究[J]. 地球物理学进展, 2022, 37 (3): 1100- 1111. |
6 | ZHOU Z W, RAHMAN S M M, TAJBAKHSH N, et al. UNet++: A nested U-net architecture for medical image segmentation[M]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham: Springer International Publishing, 2018: 3-11. |
7 | 席英杰, 李克文, 徐延辉, 等. 一种用于地震断层图像识别的SPD-UNet模型[J]. 计算机工程, 2021, 47 (12): 249- 255. |
8 | 杨晶, 丁仁伟, 林年添, 等. 基于深度学习的地震断层智能识别研究进展[J]. 地球物理学进展, 2022, 37 (1): 298- 311. |
9 |
WANG J , ZHANG J H , ZHANG J L , et al. Research on fault recognition method combining 3D Res-UNet and knowledge distillation[J]. Applied Geophysics, 2021, 18 (2): 199- 212.
DOI |
10 | 周东红, 李辉, 阎建国. CNN标签数据迭代优化及在小断层识别中的应用[J]. 地球物理学进展, 2022, 37 (1): 338- 347. |
11 |
WU X , LIANG L , SHI Y , et al. FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation[J]. Geophysics, 2019, 84 (3): IM35- IM45.
DOI |
12 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 2818-2826. |
13 |
XU X J , LIU C , ZHENG Y Y . 3D tooth segmentation and labeling using deep convolutional neural networks[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 25 (7): 2336- 2348.
DOI |
14 | LU X , HUANG H , LI S , et al. Salt-body classification method based on U-Net[J]. Chinese Journal of Computational Physics, 2020, 37 (3): 327- 334. |
15 | 娄莉, 张丰侠, 韩柏迅. 基于图像分割的盐丘识别算法研究[J]. 计算物理, 2023, 40 (4): 511- 518. |
16 | ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-net: Learning dense volumetric segmentation from sparse annotation[M]//Medical Image Computing and Computer-assisted Intervention-MICCAI 2016. Cham: Springer International Publishing, 2016: 424-432. |
17 | LI X M , CHEN H , QI X J , et al. H-DenseUNet: Hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J]. IEEE Transactions on Medical Imaging, 2018, 37 (12): 2663- 2674. |
18 | BADRINARAYANAN V , KENDALL A , CIPOLLA R . SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (12): 2481- 2495. |
19 | HUANG H M, LIN L F, TONG R F, et al. UNet 3: A full-scale connected UNet for medical image segmentation[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020: 1055-1059. |
20 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 1-9. |
21 | ASHISH V , NOAM S , NIKI P , et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30, 5998- 6008. |
[1] | Cheng GUO, Pengdan CHENG, Yahui WANG. Improved Fifth-order WENO-Z+ Schemes Based on Modified Stencil [J]. Chinese Journal of Computational Physics, 2023, 40(6): 666-676. |
[2] | Pengdi LI, Jun LIU, Qirong ZHENG, Chuanguo ZHANG, Yonggang LI, Yongsheng ZHANG, Gaofeng ZHAO, Zhi ZENG. Dynamics Modeling of Charged Defects in Si under B Ion Implantation [J]. Chinese Journal of Computational Physics, 2021, 38(3): 361-370. |
[3] | LIU Tao, YANG Ziyi, CHEN Yuqing, GAO Tao. Structural, Electronic and Thermodynamic Properties of Heavy-fermion Superconductivity PuMGa5 (M=Co,Rh): First Principles Study [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 38(1): 106-112. |
[4] | WANG Shusong, ZHANG Suying. Giant Vortex States of Bose-Einstein Condensate in a Harmonic Plus Gaussian Trap [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 38(1): 113-119. |
[5] | LIU Yongzhi, XIE Liqiang, LIANG Shengde, ZHU Kaili, XI Zhonghong, YUAN Fangqiang. Potential Biotoxicity of Fullerene C60 on Cell Membrane: Molecular Dynamics Simulation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(4): 479-487. |
[6] | WEI Zhichao, WANG Nengping. Quantum Transport in a Carbon Nanotube Transistor:Influence of Two Charged Defects in Dielectric [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(3): 352-364. |
[7] | ZHANG Xueying, FENG Lin. Electronic Structure and Magnetic Properties of Carbon-doped Mn3Ge [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(6): 742-748. |
[8] | REN Juan, ZHANG Ningchao, LIU Pingping. Theoretical Study on Hydrogen Storage Properties of Carbon Aerogels [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(6): 749-756. |
[9] | TANG Panfei, ZHENG Qirong, LI Jingwen, WEI Liuming, ZHANG Chuanguo, LI Yonggang, ZENG Zhi. Cluster Dynamics Modeling with Spatial Correlations in Cascades [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(5): 586-594. |
[10] | YIN Haifeng, ZENG Chunhua, CHEN Wenjing. Plasmon Excitations in Two-dimensional Binary Silicon Carbide Nanostructures [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(5): 603-609. |
[11] | MA Wenjie, ZHANG Ping. A Method to Calculate Critical Magnetic Field of PM-FM Transformation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(4): 421-426. |
[12] | MO Kangxin, SU Jiajia. Dipolar Interaction in Magnetic Nanoparticle Systems: A Monte Carlo Study [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(3): 335-341. |
[13] | ZHANG Haiyan, YIN Xinchun. Molecular Dynamics Study on Growth Mechanism of Pure Metals Solid-Liquid Interface During Solidification [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(1): 80-88. |
[14] | MA Rui, ZHANG Hualin. Electronic Properties of Graphene Nanoribbons Doped with Rhombus Boron Nitride Segment [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(1): 99-105. |
[15] | ZHOU Kang, FENG Qing, TIAN Yun, LI Ke, ZHOU Qingbin. Oxidizing Gas NO2 Optical Gas Sensing Characteristics of Transition Metal Cu and Cr Doped TiO2 Surfaces [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(6): 702-710. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.