Chinese Journal of Computational Physics ›› 2025, Vol. 42 ›› Issue (1): 65-76.DOI: 10.19596/j.cnki.1001-246x.8822
• Research Article • Previous Articles Next Articles
Shubao SUN(), Qin LOU*(
)
Received:
2023-08-28
Online:
2025-01-25
Published:
2025-03-08
Contact:
Qin LOU
Shubao SUN, Qin LOU. Mesoscopic Simulation of CO2 Absorption by Tandem Porous CaO Particles at REV Scale[J]. Chinese Journal of Computational Physics, 2025, 42(1): 65-76.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8822
物理量 | 物理量符号 | 物理单位 | 格子单位 | 转换因子 |
计算域长度 | Lx | 3.6×10-3 m | 720 | 5×10-6 m |
计算域高度 | Ly | 1.8×10-3 m | 360 | 5×10-6 m |
颗粒直径 | lp | 1.5×10-4m | 30 | 5×10-6 m |
入口CO2流速 | u0 | 7.4×10-3m·s-1 | 0.074(Re=20) | 0.1 m·s-1 |
CO2浓度 | C0 | 5.64 mol·m-3 | 1 | 5.64 mol·m-3 |
CO2密度 | ρ | 1.977 kg·m-3 | 1 | 1.977 kg·m-3 |
CO2黏度 | v | 8.37×10-6m2·s-1 | 0.037 | 2.26×10-4 m2·s-1 |
CaO物质的量 | n0 | 212.63 mol·m-3 | 37.7(ε=0.2) | 5.64 mol·m-3 |
Table 1 Conversion between lattice units and physical units
物理量 | 物理量符号 | 物理单位 | 格子单位 | 转换因子 |
计算域长度 | Lx | 3.6×10-3 m | 720 | 5×10-6 m |
计算域高度 | Ly | 1.8×10-3 m | 360 | 5×10-6 m |
颗粒直径 | lp | 1.5×10-4m | 30 | 5×10-6 m |
入口CO2流速 | u0 | 7.4×10-3m·s-1 | 0.074(Re=20) | 0.1 m·s-1 |
CO2浓度 | C0 | 5.64 mol·m-3 | 1 | 5.64 mol·m-3 |
CO2密度 | ρ | 1.977 kg·m-3 | 1 | 1.977 kg·m-3 |
CO2黏度 | v | 8.37×10-6m2·s-1 | 0.037 | 2.26×10-4 m2·s-1 |
CaO物质的量 | n0 | 212.63 mol·m-3 | 37.7(ε=0.2) | 5.64 mol·m-3 |
ε=0.01 | ε=0.4 | ε=0.6 | ε=0.8 | |
Ref.[ | Ref.[ | Ref.[ | Ref.[ | |
2.05 | 2.411 | 2.105 | 2.049 | |
本文 | 2.053 | 2.423 | 2.136 | 2.083 |
相对误差/% | 0.15 | 0.49 | 1.45 | 1.63 |
Table 2 Comparison of resistance coefficient data
ε=0.01 | ε=0.4 | ε=0.6 | ε=0.8 | |
Ref.[ | Ref.[ | Ref.[ | Ref.[ | |
2.05 | 2.411 | 2.105 | 2.049 | |
本文 | 2.053 | 2.423 | 2.136 | 2.083 |
相对误差/% | 0.15 | 0.49 | 1.45 | 1.63 |
颗粒直径 | 流动阻力 |
lp= 50 μm | 4.66×10-3 |
lp=150 μm | 8.37×10-2 |
lp=250 μm | 3.92×10-1 |
Table 3 Comparison of resistance to flow
颗粒直径 | 流动阻力 |
lp= 50 μm | 4.66×10-3 |
lp=150 μm | 8.37×10-2 |
lp=250 μm | 3.92×10-1 |
ε=0.1 | ε=0.2 | ε=0.3 | ε=0.4 | ε=0.5 | ε=0.6 | ε=0.7 | ε=0.8 | ε=0.9 | 平均 | |
150 μm比250 μm增量 | 9% | 6.8% | 7.7% | 5.4% | 5.3% | 5.4% | 5.9% | 9.3% | 10.3% | 7.2% |
50 μm比150μm增量 | 13.3% | 9.8% | 8.3% | 7.5% | 5.6% | 7.5% | 8.3% | 7.7% | 7.7% | 8.4% |
Table 4 Percentage increment of conversion efficiency for different particle sizes
ε=0.1 | ε=0.2 | ε=0.3 | ε=0.4 | ε=0.5 | ε=0.6 | ε=0.7 | ε=0.8 | ε=0.9 | 平均 | |
150 μm比250 μm增量 | 9% | 6.8% | 7.7% | 5.4% | 5.3% | 5.4% | 5.9% | 9.3% | 10.3% | 7.2% |
50 μm比150μm增量 | 13.3% | 9.8% | 8.3% | 7.5% | 5.6% | 7.5% | 8.3% | 7.7% | 7.7% | 8.4% |
1 |
DOI |
2 |
魏凤, 江娴, 周洪, 等. 基于CCS的MEA脱碳技术全球专利发展态势[J]. 化工进展, 2015, 34(12): 4415- 4421.
|
3 |
DOI |
4 |
DOI |
5 |
杜旭林, 程林松, 牛烺昱, 等. 考虑水力压裂缝和天然裂缝动态闭合的三维离散缝网数值模拟[J]. 计算物理, 2022, 39(4): 453- 464.
DOI |
6 |
DOI |
7 |
赵红涛, 王树民, 张曼. 不同钙源制备钙基CO2吸收剂研究进展[J]. 现代化工, 2019, 39(6): 36-40, 42.
|
8 |
DOI |
9 |
房凡, 李振山, 蔡宁生. 钙基CO2吸收剂循环反应特性的试验与模拟[J]. 中国电机工程学报, 2009, 29(14): 30- 35.
|
10 |
李振山, 蔡宁生, 赵旭东, 等. CaO与CO2循环反应动力学特性[J]. 燃烧科学与技术, 2006(6): 481- 485.
|
11 |
戢美璇, 蔚喜军, 宋明阳. 一维含化学反应流体力学方程组的ALE间断有限元方法[J]. 计算物理, 2020, 37(1): 1- 9.
DOI |
12 |
雷体蔓, 孟旭辉, 郭照立. 微通道内反应流体粘性指进的数值研究[J]. 计算物理, 2016, 33(1): 30- 38.
|
13 |
杨艳霞, 李静. 膜生物反应器内生化反应过程的格子Boltzmann模拟[J]. 计算物理, 2018, 35(5): 571- 576.
DOI |
14 |
王保文, 郑瑛, 贺铸, 等. CaO高温分离CO2过程的数值模拟[J]. 工程热物理学报, 2006, 27(6): 1051- 1053.
|
15 |
|
16 |
张婷, 郭照立, 柴振华, 等. 钙基吸收剂吸收CO2过程的格子Boltzmann模拟[J]. 化工学报, 2012, 63(S1): 165- 171.
|
17 |
孟旭辉, 王亮, 郭照立. 管道中CaO颗粒吸收CO2的格子Boltzmann方法模拟[J]. 计算物理, 2014, 31(2): 173- 184.
|
18 |
DOI |
19 |
|
20 |
DOI |
21 |
DOI |
22 |
|
23 |
DOI |
24 |
DOI |
25 |
DOI |
26 |
|
27 |
DOI |
28 |
|
29 |
|
30 |
刘波, 丁玉栋, 廖强, 等. 单颗粒多孔MgO吸附剂CO2吸附流动传输的格子Boltzmann方法模拟[J]. 中国科学院大学学报, 2020, 37(2): 248- 254.
|
[1] | Yifan XU, Huming ZHANG, Ming ZHAO. Determinism and Chaos of Natural Convection in Eccentric Annulus [J]. Chinese Journal of Computational Physics, 2025, 42(1): 28-37. |
[2] | Rupu WEI, Peng DING. Multi-block Local Mesh Refinement Method for LBM with Inversion of Distribution Function [J]. Chinese Journal of Computational Physics, 2024, 41(5): 643-650. |
[3] | Xiwen WANG, Xuemin YE, Dan LI, Chunxi LI. Three-dimensional Lattice Boltzmann Method Simulation of A Large Droplet Impacting A Small Sphere with Different Wettability [J]. Chinese Journal of Computational Physics, 2024, 41(2): 172-181. |
[4] | Ming GAO, Lu CHEN, Jia LIANG, Dongmin WANG, Yugang ZHAO, Lixin ZHANG, Quan SUN, Haojie LI. LBM Simulation of Two Droplets Merging and Bouncing at the Top of an Inclined Plane with a Wetting Gradient [J]. Chinese Journal of Computational Physics, 2023, 40(3): 333-342. |
[5] | Shuting FENG, Houping DAI, Tongzheng SONG. Lattice Boltzmann Method for Two-dimensional Fractional Reaction-Diffusion Equations [J]. Chinese Journal of Computational Physics, 2022, 39(6): 666-676. |
[6] | Liubin ZHANG, Yanguang SHAN, Zhicheng RONG. Single Bubble Dynamics in Pool Boiling Under Uniform Electric Field: LBM Simulation [J]. Chinese Journal of Computational Physics, 2022, 39(5): 537-548. |
[7] | Jiaxin LIU, Lin ZHENG, Beihao ZHANG. Entropy Generation in Double-diffusive Natural Convection in a Square Porous Enclosure: Lattice Boltzmann Method [J]. Chinese Journal of Computational Physics, 2022, 39(5): 549-563. |
[8] | Pin-liang LIN, Huan-huan FENG, Yu-hong DONG. Analysis of Flow Field Around a Cylinder with Porous Media Layer [J]. Chinese Journal of Computational Physics, 2022, 39(4): 418-426. |
[9] | Qiao-ling ZHANG, He-fang JING. Flow Patterns in Three-dimensional Lid-driven Cavities with Curved Boundary: MRT-LBM Study [J]. Chinese Journal of Computational Physics, 2022, 39(4): 427-439. |
[10] | Lu CHEN, Ming GAO, Jia LIANG, Dongmin WANG, Yugang ZHAO, Lixin ZHANG. Droplet Upward Movement on an Inclined Surface Under Wetting Gradient: Lattice Boltzmann Simulation [J]. Chinese Journal of Computational Physics, 2021, 38(6): 672-682. |
[11] | Xuedan WEI, Houping DAI, Mengjun LI, Zhoushun ZHENG. Lattice Boltzmann Method for One-dimensional Riesz Spatial Fractional Convection-Diffusion Equations [J]. Chinese Journal of Computational Physics, 2021, 38(6): 683-692. |
[12] | Jianchao CAI. Some Key Issues and Thoughts on Spontaneous Imbibition in Porous Media [J]. Chinese Journal of Computational Physics, 2021, 38(5): 505-512. |
[13] | Jiangtao ZHENG, Ninghong JIA, Huifang HU, Yong YANG, Yang JU, Moran WANG. Study on Liquid-Liquid Spontaneous Imbibition Dynamics in Bifurcated Channels [J]. Chinese Journal of Computational Physics, 2021, 38(5): 543-554. |
[14] | Min WANG, Yuqing SHEN, Zhenyu CHEN, Peng XU. Reconstruction and Seepage Simulation of Random Porous Media with Monte Carlo Method [J]. Chinese Journal of Computational Physics, 2021, 38(5): 623-630. |
[15] | Qin LOU, Sheng TANG, Haoyuan WANG. Numerical Simulation of Bubble Dynamics in Porous Media with a Lattice Boltzmann Large Density Ratio Model [J]. Chinese Journal of Computational Physics, 2021, 38(3): 289-300. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.