1 |
ECKHARDT R . Stan U, John V Neumann, and the Monte Carlo method[J]. Los Alamos Science, 1987, 15 (15): 131- 137.
|
2 |
NEUTS N , PURDUE P . Buffon in the round[J]. Mathematics Magazine, 1971, 44, 81- 89.
DOI
|
3 |
METROPOLIS N . The beginning of the Monte Carlo method[J]. Los Alamos Science, 1987, 12, 125- 130.
|
4 |
GOLDSTINE H H , GOLDSTINE A . The electronic numerical integrator and computer (ENIAC)[J]. IEEE Annals of the History of Computing, 1946, 18, 10- 16.
|
5 |
DRUMMOND N D , MONSERRAT B , LLOYD-WILLIAMS J H , et al. Quantum monte carlo study of the phase diagram of solid molecular hydrogen at extreme pressures[J]. Nature Communications, 2015, 6, 7794.
DOI
|
6 |
FAZEL M , WESTER M J , MAZLOOM-FARSIBAF H , et al. Bayesian multiple emitter fitting using reversible jump markov chain monte carlo[J]. Scientific Reports, 2019, 9 (1): 13791.
DOI
|
7 |
ILISIE V , MOLINER L , OLIVER S , et al. High resolution and sensitivity gamma camera with active septa. A first Monte Carlo study[J]. Scientific Reports, 2019, 9 (1): 18431.
DOI
|
8 |
JIANG Weilun , LIU Yuzhi , KLEIN A , et al. Monte Carlo study of the pseudogap and superconductivity emerging from quantum magnetic fluctuations[J]. Nature Communications, 2022, 13 (1): 2655.
DOI
|
9 |
NGUYEN H , SHI H , XU J , et al. CPMC-Lab: A matlab package for constrained path Monte Carlo calculations[J]. Computer Physics Communications, 2014, 185, 12, 3344- 3357.
|
10 |
ANDERSON J B . A random-walk simulation of the Schrödinger equation: H3+[J]. The Journal of Chemical Physics, 1975, 63, 1499- 1503.
DOI
|
11 |
BARNETT R N , WHALEY K B . Variational and diffusion Monte Carlo techniques for quantum clusters[J]. Physical Review A, 1993, 47 (5): 4082- 4098.
DOI
|
12 |
SANDVIK A W . Stochastic series expansion method for quantum ising models with arbitrary interactions[J]. Physical Review E, 2003, 68, 056701.
DOI
|
13 |
POLLOCK E L , CEPERLEY D M . Simulation of quantum many-body systems by path-integral methods[J]. Physical Review B, 1984, 30 (5): 2555- 2568.
DOI
|
14 |
HANDSCOMB D . A Monte Carlo method applied to the Heisenberg ferromagnet[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1964, 60, 115- 122.
DOI
|
15 |
KALOS M H . Monte Carlo calculations of the ground state of three-and four-body[J]. Physical Review Journals Archive, 1962, 128 (4): 1791- 1795.
|
16 |
MCMILLAN W L . Ground state of liquid He4[J]. Physical Review Journals Archive, 1965, 138, A442- A451.
|
17 |
BLANKENBECLER R , SCALAPINO D J , SUGAR R L . Monte Carlo calculations of coupled boson-fermion systems. I[J]. Physical Review D, 1981, 24 (8): 2278- 2286.
DOI
|
18 |
LOH E Y , J R , GUBERNATIS J E , et al. Sign problem in the numerical simulation of many-electron systems[J]. Physical Review B Condensed Matter, 1990, 41 (13): 9301-- 9307.
DOI
|
19 |
BLANKENBECLER R , SUGAR R L . Projector Monte Carlo method[J]. Physical Review D, 1983, 27 (6): 1304- 1311.
DOI
|
20 |
REYNOLDS P J , CEPERLEY D M , ALDER B J , et al. Fixed-node quantum Monte Carlo for moleculesa)b)[J]. The Journal of Chemical Physics, 1982, 7711, 5593- 5603.
|
21 |
FEYNMAN R P , HIBBS A R , WEISS G H . Quantum mechanics and path integrals[J]. Physics Today, 1966, 19 (6): 89.
|
22 |
SCHOOF T , BONITZ M , FILINOV A , et al. Configuration path integral Monte Carlo[J]. Contributions to Plasma Physics, 2011, 51 (8): 687- 697.
DOI
|
23 |
DORNHEIM T , GROTH S , BONITZ M . The uniform electron gas at warm dense matter conditions[J]. Physics Reports, 2018, 744, 1- 86.
DOI
|
24 |
SANDVIK A W , KURKIJARVI J 1 . Quantum Monte Carlo simulation method for spin systems[J]. Physical Review B, 1991, 43 (7): 5950- 5961.
DOI
|
25 |
ZHANG S, CARLSON J. GUBERNATIS J E. Constrained path Monte Carlo method for fermion ground states[J]. Physical Review B, 1997, 55(12-15): 74: 3652-3655.
|
26 |
QIN Mingpu . Self-consistent optimization of the trial wave function within the constrained path auxiliary field quantum Monte Carlo method using mixed estimators[J]. Physical Review B, 2023, 107 (23): 235124.
DOI
|
27 |
SHI H , JIMÉNEZ H C A , RODRÍGUEZ G R , et al. Symmetry-projected wave functions in quantum Monte Carlo calculations[J]. Physical Review B, 2014, 89 (12-15): 125129.
|
28 |
RODRÍGUEZ G R , JIMÉNEZ-HOYOS C A , SCHUTSKI R , et al. Multireference symmetry-projected variational approaches for ground and excited states of the one-dimensional hubbard model[J]. Physical Review B, 2013, 87 (23): 235129.
DOI
|
29 |
XIAO Zhiyu , SHI Hao , ZHANG Shiwei . Pseudo-BCS wave function from density matrix decomposition: Application in auxiliary-field quantum Monte Carlo[J]. Physical Review Research, 2021, 3 (1): 013065.
DOI
|
30 |
HE Yuanyao , QIN Mingpu , SHI Hao , et al. Finite-temperature auxiliary-field quantum Monte Carlo: Self-consistent constraint and systematic approach to low temperatures[J]. Physical Review B, 2019, 99, 045108.
DOI
|
31 |
XIAO Bo , HE Yuanyao , GEORGES A , et al. Temperature dependence of spin and charge orders in the doped Two-Dimensional hubbard model[J]. physical review X, 2023, 13 (1): 011007.
DOI
|
32 |
PROKOF'EV N V , SVISTUNOV B V . Polaron problem by diagrammatic quantum Monte Carlo[J]. Physical Review Letters, 1998, 81, 2514- 2517.
DOI
|
33 |
KATO Y , YAMAMOTO D , DANSHITA I . Quantum tricriticality at the superfluid-insulator transition of binary bose mixtures[J]. Physical Review Letters, 2014, 112, 055301.
DOI
|
34 |
MENASHE D , BIHAM O , ALEXANDER E . Glassy properties and fluctuations of interacting electrons in two-dimensional systems[J]. Europhysics Letters, 2000, 52 (1): 94- 100.
DOI
|
35 |
HE L P , HONG X C , DONG J K , et al. Quantum transport evidence for the three-dimensional dirac semimetal phase in Cd3as2[J]. Physical Review Letters, 2014, 113 (24): 246402.
DOI
|
36 |
BATROUNI G G , ROUSSEAU V , SCALETTAR R T , et al. Mott domains of bosons confined on optical lattices[J]. Physical review letters, 2002, 89 (11): 117203.
DOI
|
37 |
MVHLBACHER L , ANKERHOLD J , KOMNIK A . Nonequilibrium dynamics of correlated electron transfer in molecular chains[J]. Physical Review Letters, 2005, 95 (22): 220404.
DOI
|
38 |
MA Tianxing , ZHANG Lufeng , CHANG C C , et al. Localization of interacting dirac fermions[J]. Physical Review Letters, 2018, 120, 116601.
DOI
|
39 |
WANG Jingyao , ZHANG Lufeng , MA Runyu , et al. Intermediate phase in interacting Dirac fermions with staggered potential[J]. Physical Review B, 2020, 101 (4): 245161.
|
40 |
GUO Kaiyi , LIANG Ying , Ma Tianxing . Doping driven metal-insulator transition in disordered graphene[J]. Physical Review B, 2024, 109, 045107.
|
41 |
MENG Jingyao , MA Runyu , ZHANG Lufeng , et al. Transport anisotropy and metal-insulator transition in striped Dirac fermion systems[J]. Physical Review B, 2022, 106, 235140.
DOI
|
42 |
MENG Jingyao , ZHANG Lufeng , MA Tianxing , et al. Magnetic phase transition in disordered interacting Dirac fermion systems via the Zeeman field[J]. Physical Review B, 2022, 105, 205121.
DOI
|
43 |
MENG Jingyao , MONDAINI R , MA Tianxing , et al. Inducing a metal-insulator transition in disordered interacting Dirac fermion systems via an external magnetic field[J]. Physical Review B, 2021, 104, 045138.
DOI
|
44 |
TIAN Lingyu , MENG Jingyao , Ma Tianxing . Intermediate phase induced by dilution in a correlated Dirac Fermi system[J]. Physical Review B, 2022, 106, 205144.
DOI
|
45 |
TIAN Lingyu , LI Yueqi , LIANG Ying , et al. Doping-dependent metal-insulator transition in a disordered Hubbard model[J]. Physical Review B, 2022, 105, 045132.
DOI
|
46 |
LI Yueqi , TIAN Lingyu , MA Tianxing , et al. Metal-insulator transition in the disordered Hubbard model of the Lieb lattice[J]. Physical Review B, 2022, 106, 205149.
DOI
|
47 |
LIAO Dayuan , KANG JIAN , BREIØ C N , et al. Correlation-Induced insulating topological phases at charge neutrality in twisted bilayer graphene[J]. physical review X, 2021, 11, 011014.
|
48 |
HUANG Tongyun , ZHANG Lufeng , MA Tianxing . Antiferromagnetically ordered mott insulator and d+id superconductivity in twisted bilayer graphene: a quantum Monte Carlo study[J]. Science Bulletin, 2019, 64 (5): 310- 314.
DOI
|
49 |
HUANG E W , SHEPPARD R , MORITZ B , et al. Strange metallicity in the doped Hubbard model[J]. Science, 2019, 366 (6468): 987- 990.
DOI
|
50 |
ŠIMKOVIC F , LEBLANC J P F , KIM A J , et al. Extended crossover from a fermi liquid to a quasiantiferromagnet in the half-Filled 2D hubbard model[J]. Physical Review Letters, 2020, 124 (1): 017003.
DOI
|
51 |
BULUT N , KOSHIBAE W , MAEKAWA S . Magnetic correlations in the Hubbard model on triangular and Kagomé lattices[J]. Physical Review Letters, 2005, 95 (3): 037001.
DOI
|
52 |
YAN S , HUSE D A , WHITE S R . Spin-Liquid ground state of the S=1/2 kagome[J]. Heisenberg Antiferromagnet.Science, 2011, 332, 1173- 1176.
|
53 |
MISHMASH R V , GARRISON J R , BIERI S , et al. Theory of a competitive spin liquid state for weak mott insulators on the triangular lattice[J]. Physical Review Letters, 2013, 111 (15): 157203.
DOI
|
54 |
TOCCHIO L F , MONTORSI A , BECCA F . Magnetic and spin-liquid phases in the frustrated t-t'Hubbard model on the triangular lattice[J]. Physical Review B, 2020, 102 (11): 115150.
DOI
|
55 |
LIAO H J , XIE Z Y , CHEN J , et al. Gapless spin-liquid ground state in the S=1/2 Kagome Antiferromagnet[J]. Physical Review Letters, 2017, 118, 137202.
DOI
|
56 |
IQBAL Y , POILBLANC D , BECCA F 2 . Spin-1/2 Heisenberg J1-J2 antiferromagnet on the kagome lattice[J]. Physical Review B, 2015, 91, 020402.
DOI
|
57 |
IQBAL Y , BECCA F , SORELLA S , et al. Gapless spin-liquid phase in the kagome spin-1/2 Heisenberg antiferromagnet[J]. Physical Review B, 2013, 87, 060405.
DOI
|
58 |
BINDER K . Applications of Monte Carlo methods to statistical physics[J]. Reports on Progress in Physics, 1997, 60, 487.
DOI
|
59 |
MA T , HU F , HUANG Z , et al. Controllability of ferromagnetism in graphene[J]. Applied Physics Letters, 2010, 97, 112504.
DOI
|
60 |
ZHANG X , MA R , FAN Z , et al. Evolution of magnetic correlation in an inhomogeneous square lattice[J]. Physical Review B, 2023, 107, 235128.
DOI
|
61 |
PAN Y , MA R , MA T . Strong ferromagnetic fluctuations in a doped checkerboard lattice[J]. Physical Review B, 2023, 107, 245126.
DOI
|
62 |
CHENG S , YU J , MA T , et al. Strain-induced edge magnetism at the zigzag edge of a graphene quantum dot[J]. Physical Review B, 2015, 91, 075410.
DOI
|
63 |
HAN R , CHEN J , ZHANG M , et al. Zigzag edge ferromagnetism of triangular-graphene-quantum-dot-like system[J]. Physical Review B, 2024, 109, 075117.
DOI
|
64 |
YANG G , XU S , ZHANG W , et al. Room-temperature magnetism on the zigzag edges of phosphorene nanoribbons[J]. Physical Review B, 2016, 94, 075106.
DOI
|
65 |
HU F M , MA T X , LIN H Q , et al. Magnetic impurities in graphene[J]. Physical Review B, 2011, 84, 075414.
DOI
|
66 |
LIN H Q , HIRSCH J E . Two-dimensional Hubbard model with nearest- and next-nearest-neighbor hopping[J]. Physical Review B: Condensed Matter, 1987, 35 (7): 3359- 3368.
DOI
|
67 |
HIRSCH J E , LIN H Q . Pairing in the two-dimensional Hubbard model: a Monte Carlo study[J]. Physical Review B: Condensed Matter, 1988, 37 (10): 5070- 5074.
DOI
|
68 |
HUANG Z B , LIN H Q , GUBERNATIS J E . Pairing, charge, and spin correlations in the three-band Hubbard model[J]. Physical Review B, 2001, 63, 115112.
DOI
|
69 |
HUANG Z B , LIN H Q , GUBERNATIS J E . Quantum Monte Carlo study of spin, charge, and pairing correlations in the t-t'-U Hubbard model[J]. Physical Review B, 2001, 64, 205101.
DOI
|
70 |
MA T , HUANG Z , HU F , et al. Pairing in graphene: a quantum Monte Carlo study[J]. Physical Review B, 2011, 84, 121410.
DOI
|
71 |
CHRISTENSEN M H , WANG Xiaoyu , SCHATTNER Y , et al. Modeling unconventional superconductivity at the crossover between strong and weak electronic interactions[J]. Physical Review Letters, 2020, 125 (24): 247001.
DOI
|
72 |
XU Xiaoyan , GROVER T . Competing nodal d-Wave superconductivity and antiferromagnetism[J]. Physical Review Letters, 2021, 126 (21): 217002.
DOI
|
73 |
HUANG Xuxin , CLAASSEN M , HUANG E W , et al. Biexciton condensation in electron-hole-doped Hubbard bilayers: a sign-problem-free quantum Monte Carlo study[J]. Physical Review Letters, 2020, 124 (7): 077601.
DOI
|
74 |
FELDBACHER M , ASSAAD F F , HÉBERT F , et al. Coexistence of s-wave superconductivity and antiferromagnetism[J]. Physical Review Letters, 2003, 91 (5): 056401.
DOI
|
75 |
WATANABE H , SHIRAKAWA T , YUNOKI S . Monte Carlo study of an unconventional superconducting phase in iridium oxide J(eff)=1/2 Mott insulators induced by carrier doping[J]. Physical Review Letters, 2013, 110 (2): 027002.
DOI
|
76 |
SORDI G , SÉMON P , HAULE K , et al. Strong coupling superconductivity, pseudogap, and Mott transition[J]. Physical Review Letters, 2012, 108 (21): 216401.
DOI
|
77 |
WANG Zhenjiu , LIU Yuhai , SATO T , et al. Doping-induced quantum spin hall insulator to superconductor transition[J]. Physical Review Letters, 2021, 126 (20): 205701.
DOI
|
78 |
SORELLA S , MARTINS G B , BECCA F , et al. Superconductivity in the two-dimensional t-J model[J]. Physical Review Letters, 2002, 88 (11): 117002.
DOI
|
79 |
ZHANG S , CARLSON J , GUBERNATIS J E . Constrained path quantum Monte Carlo method for fermion ground states[J]. Physical Review Letters, 1995, 74 (18): 3652- 3655.
DOI
|
80 |
CHANG C C , ZHANG Shiwei . Spin and charge order in the doped Hubbard model: long-wavelength collective modes[J]. Physical Review Letters, 2010, 104 (11): 116402.
DOI
|
81 |
LANZARA A , BOGDANOV P V , ZHOU X J , et al. Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors[J]. Nature, 2001, 412 (6846): 510- 514.
DOI
|
82 |
CUK T , BAUMBERGER F , LU D H , et al. Coupling of the B1g phonon to the antinodal electronic states of Bi2Sr2Ca0.92Y0.08Cu2O8+δ[J]. Physical Review Letters, 2004, 93 (11): 117003.
DOI
|
83 |
HUANG Z B , HANKE W , ARRIGONI E , et al. Electron-phonon vertex in the two-dimensional one-band Hubbard model[J]. Physical Review B, 2003, 68, 220507.
DOI
|
84 |
HUANG Z B , LIN H Q , ARRIGONI E . Strong enhancement of d-wave superconducting state in the three-band Hubbard model coupled to an apical oxygen phonon[J]. Physical Review B, 2011, 83, 064521.
DOI
|
85 |
ZHANG C , SOUS J , REICHMAN D R , et al. Bipolaronic high-temperature superconductivity[J]. Physical Review X, 2023, 13, 011010.
|
86 |
CHENG K , FANG S C , HUANG Z B . Drastic enhancement of d-wave superconductivity in an extended checkerboard Hubbard model[J]. Physical Review B, 2024, 109, 014519.
DOI
|
87 |
OHGOE T , IMADA M . Competition among superconducting, antiferromagnetic, and charge orders with intervention by phase separation in the 2D Holstein-Hubbard model[J]. Physical Review Letters, 2017, 119 (19): 197001.
DOI
|
88 |
MA T , YANG F , YAO H , et al. Possible triplet p+ip superconductivity in graphene at low filling[J]. Physical Review B, 2014, 90, 245114.
DOI
|
89 |
CHEN W , CHU Y , HUANG T , et al. Metal-insulator transition and dominant d+id pairing symmetry in twisted bilayer graphene[J]. Physical Review B, 2020, 101, 155413.
DOI
|
90 |
DAI H , MA R , ZHANG X , et al. Quantum Monte Carlo study of superconductivity in rhombohedral trilayer graphene under an electric field[J]. Physical Review B, 2023, 107, 245106.
DOI
|
91 |
ZHANG L , GUO T , MOU Y , et al. Enhancement of d-wave pairing in the striped phase with nearest neighbor attraction[J]. Physical Review B, 2022, 105, 155154.
DOI
|
92 |
MA T , LIN H Q , HU J . Quantum monte carlo study of a dominant s-wave pairing symmetry in iron-based superconductors[J]. Physical Review Letters, 2013, 110, 107002.
DOI
|
93 |
CHEN C , MA R , SUI X , et al. Antiferromagnetic fluctuations and dominant dxy-wave pairing symmetry in nickelate-based superconductors[J]. Physical Review B, 2022, 106, 195112.
DOI
|
94 |
CHEN C , FAN Z , MA R , et al. Stripe order manipulated dominant pairing symmetry in the Hubbard model[J]. Physical Review B, 2024, 109, 045101.
|
95 |
ATTANASIO F , BAUER M , KAPUST R , et al. Harmonically trapped fermions in one dimension: A finite-temperature lattice Monte Carlo study[J]. Physical Review a, 2024, 109, 033305.
DOI
|
96 |
WOLAK M J , ROUSSEAU V G , MINIATURA B , et al. Finite-temperature quantum Monte Carlo study of the one-dimensional polarized fermi gas[J]. Physical Review a, 2010, 82, 013614.
DOI
|
97 |
YANG X, TANG H K, YUAN N F Q, et al. Topological superfluids in two-dimensional Fermi gas with Rashba spin-orbit coupling[DB/OL]. arXiv, 2021. https://arxiv.org/abs/2109.04670.
|
98 |
JENSEN S , GILBRETH C N , ALHASSID Y . Contact in the unitary fermi gas across the superfluid phase transition[J]. Physical Review Letters, 2020, 125 (4): 043402.
DOI
|
99 |
VAN HOUCKE K , WERNER F , KOZIK E , et al. Feynman diagrams versus Fermi-gas Feynman emulator[J]. Nature Physics, 2012, 8 (5): 366- 370.
DOI
|
100 |
DRUT J E , LÄHDE T A , WLAZŁOWSKI G , et al. Equation of state of the unitary Fermi gas: An update on lattice calculations[J]. Physical Review A, 2012, 85, 051601.
DOI
|
101 |
RICHIE-HALFORD A , DRUT J E , BULGAC A . Emergence of a pseudogap in the BCS-BEC crossover[J]. Physical Review Letters, 2020, 125, 060403.
DOI
|
102 |
GANDOLFI S . Quantum Monte Carlo study of strongly interacting fermi gases[J]. Journal of Physics: Conference Series, 2014, 125, 012011.
|
103 |
SALES B C , LUMSDEN M D , NAGLER S E , et al. Magnetic field enhancement of heat transport in the 2D Heisenberg antiferromagnet K2V3O8[J]. Physical Review Letters, 2002, 88 (9): 095901.
DOI
|
104 |
LI S Y , TAILLEFER L , WANG C H , et al. Ballistic magnon transport and phonon scattering in the antiferromagnet Nd2CuO4[J]. Physical Review Letters, 2005, 95 (15): 156603.
DOI
|
105 |
WANG W O , DING J K , MORITZ B , et al. Magnon heat transport in a two-dimensional mott insulator[J]. Physical Review B, 2022, 105, 161103.
DOI
|
106 |
ZHANG Ananyu , QIN Jihong , XU Junjun . Thermal fluctuations of the extended Bose-Hubbard model at finite temperature[J]. Annals of Physics, 2023, 455, 169386.
DOI
|
107 |
LENIHAN C , KIM A J , ŠIMKOVIC I F , et al. Entropy in the non-fermi-liquid regime of the doped 2D Hubbard model[J]. Physical Review Letters, 2021, 126 (10): 105701.
DOI
|
108 |
SCHULTE J , BÖHM M C . Specific heat of the half-filled Hubbard chain: A Feynman path-integral Monte Carlo investigation[J]. Physical Review B: Condensed Matter, 1996, 53 (23): 15385- 15388.
DOI
|
109 |
DRIVER K P , MILITZER B . All-electron path integral Monte Carlo simulations of warm dense matter: Application to water and Carbon plasmas[J]. Physical Review Letters, 2012, 108 (11): 115502.
DOI
|
110 |
张其黎, 刘海风, 李琼, 等. 氢状态方程的路径积分蒙特卡罗研究[J]. 计算物理, 2019, 36 (4): 379- 385.
DOI
|
111 |
BÖHME M , MOLDABEKOV Z A , VORBERGER J , et al. Static electronic density response of warm dense Hydrogen: Ab initio path integral Monte Carlo simulations[J]. Physical Review Letters, 2022, 129 (6): 066402.
DOI
|
112 |
DORNHEIM T , GROTH S , VORBERGER J , et al. Ab initio path integral Monte Carlo results for the dynamic structure factor of correlated electrons: From the electron liquid to warm dense matter[J]. Physical Review Letters, 2018, 121 (25): 255001.
DOI
|
113 |
FILINOV V S , IVANOV Y B , FORTOV V E , et al. Color path-integral Monte-Carlo simulations of quark-gluon plasma: Thermodynamic and transport properties[J]. Physical Review A, 2013, 12-13, 1096- 1101.
|
114 |
颜子翔, 康炜, 张维岩, 等. 温稠密物质状态方程的路径积分蒙特卡罗方法研究进展[J]. 计算物理, 2023, 40 (2): 258- 274.
DOI
|
115 |
MEHTA P , BUKOV M , WANG C H , et al. A high-bias, low-variance introduction to machine learning for physicists[J]. Physics Reports, 2019, 810, 1- 124.
DOI
|
116 |
POULIN D , WOCJAN P . Preparing ground states of quantum many-body systems on a quantum computer[J]. Physical Review Letters, 2009, 102 (13): 130503.
DOI
|
117 |
HUO M , LI Y . Error-resilient Monte Carlo quantum simulation of imaginary time[J]. Quantum, 2021, 7, 916.
|
118 |
LI Z X , YAO H . Sign-problem-free fermionic quantum Monte Carlo: Developments and applications[J]. Annual Review of Condensed Matter Physics, 2019, 10 (1): 337- 356.
DOI
|
119 |
MA T X , WANG D , WU C J . Doping-driven antiferromagnetic insulator-superconductor transition: A quantum Monte Carlo study[J]. Physical Review B, 2022, 106, 054510.
DOI
|
120 |
MA Ry , MA Tx . Competition between antiferromagnetism and superconductivity in a doped Hubbard model with anisotropic interaction[J]. Physical Review B, 2023, 107, 214509.
DOI
|
121 |
LI Zixiang , JIANG Yifan , YAO Hong . Majorana-Time-Reversal symmetries: A fundamental principle for Sign-Problem-Free quantum Monte Carlo simulations[J]. Physical Review Letters, 2016, 117 (26): 267002.
DOI
|
122 |
GROSSMAN O , BERG E . Robust Fermi-Liquid instabilities in sign Problem-Free models[J]. Physical Review Letters, 2023, 131 (5): 056501.
DOI
|
123 |
|
124 |
LEE J , MALONE F D , REICHMAN D R . The performance of phaseless auxiliary-field quantum Monte Carlo on the ground state electronic energy of benzene[J]. Journal of Chemical Physics, 2020, 153 (12): 126101.
DOI
|
125 |
QIN M P . Self-consistent optimization of the trial wave function within the constrained path auxiliary field quantum Monte Carlo method using mixed estimators[J]. Physical Review B, 2023, 107, 235124.
DOI
|
126 |
XIAO Z Y , SHI H , ZHANG S W . Interfacing branching random walks with metropolis sampling: constraint release in auxiliary-field quantum Monte Carlo[J]. Journal of Chemical Theory and Computation, 2023, 19 (19): 6782- 6795.
DOI
|
127 |
VAEZI M S , NEGARI A R , MOHARRAMIPOUR A , et al. Amelioration for the sign problem: An adiabatic quantum Monte Carlo algorithm[J]. Physical Review Letters, 2021, 127, 217003.
DOI
|
128 |
BROECKER P , CARRASQUILLA J , MELKO R G , et al. Machine learning quantum phases of matter beyond the fermion sign problem[J]. Scientific Reports, 2017, 7 (1): 8823.
DOI
|
129 |
HANGLEITER D , ROTH I , NAGAJ D , et al. Easing the Monte Carlo sign problem[J]. Science Advances, 2020, 6 (33): eabb8341.
DOI
|
130 |
ALEXANDRU A , BASAR G , BEDAQUE P , et al. Complex paths around the sign problem[J]. Reviews of Modern Physics, 2022, 94, 015006.
DOI
|
131 |
ALEXANDRU A , BASAR G , BEDAQUE P , et al. Monte Carlo calculations of the finite density thirring model[J]. Physical Review D, 2017, 95, 014502.
|
132 |
FUKUMA M , UMEDA N . Parallel tempering algorithm for integration over Lefschetz thimbles[J]. Progress of Theoretical and Experimental Physics, 2017, 2017 (7): 073B.
|
133 |
FUKUMA M , MATSUMOTO N . Worldvolume approach to the tempered Lefschetz thimble method[J]. Progress of Theoretical and Experimental Physics, 2021, 2021 (2): 023B.
|
134 |
WYNEN J L , BERKOWITZ E , KRIEG S , et al. Machine learning to alleviate Hubbard-model sign problems[J]. Physical Review B, 2021, 103, 125153.
DOI
|
135 |
WAN Z Q , ZHANG S X , YAO H . Mitigating the fermion sign problem by automatic differentiation[J]. Physical Review B, 2022, 106, L241109.
DOI
|
136 |
D'EMIDIO J , ORÚS R , LAFLORENCIE N , et al. Universal features of entanglement entropy in the honeycomb hubbard model[J]. Physical Review Letters, 2024, 132 (7): 076502.
DOI
|
137 |
BROECKER P , TREBST S . Numerical stabilization of entanglement computation in auxiliary-field quantum Monte Carlo simulations of interacting many-fermion systems[J]. Physical Review E, 2016, 94, 063306.
DOI
|
138 |
ASSAAD F , LANG T , TOLDIN F P . Entanglement spectra of interacting fermions in quantum Monte Carlo simulations[J]. Physical Review B, 2014, 89 (12): 125121.
DOI
|
139 |
ZHANG X, PAN G P, CHEN B B, et al. An integral algorithm of exponential observables for interacting fermions in quantum Monte Carlo simulation[DB/OL]. ArXiv, 2023 https://arxiv.org/abs/2311.03448.
|
140 |
WANG F H, XU X Y. Entanglement renyi negativity of interacting fermions from quantum Monte Carlo simulations[DB/OL]. ArXiv, 2024. https://arxiv.org/abs/2312.14155.
|
141 |
EMONTS P , WESSEL S . Monte Carlo study of the discontinuous quantum phase transition in the transverse-field ising model on the pyrochlore lattice[J]. Physical Review B, 2014, 98, 174433.
|
142 |
WANG F , LANDAU D P . Efficient, multiple-range random walk algorithm to calculate the density of states[J]. Physical Review Letters, 2001, 86 (10): 2050- 2053.
DOI
|
143 |
TROYER M , WESSEL S , ALET F . Flat histogram methods for quantum systems: Algorithms to overcome tunneling problems and calculate the free energy[J]. Physical Review Letters, 2003, 90 (12): 120201.
DOI
|
144 |
PAN G P , LIAO Y D , JIANG W L , et al. Stable computation of entanglement entropy for two-dimensional interacting fermion systems[J]. Physical Review B, 2023, 108, L081123.
DOI
|
145 |
|
146 |
DING Ym, MA Ns, PAN Gp, et al. Reweight-annealing method for calculating the value of partition function via quantum Monte Carlo[DB/OL]. ArXiv, 2024. https://arxiv.org/abs/2403.08642.
|
147 |
SHAO Hui , SANDVIK A W . Progress on stochastic analytic continuation of quantum Monte Carlo data[J]. Physics Reports, 2023, 1003, 1- 88.
DOI
|
148 |
FOURNIER R , WANG L , YAZYEV O V , et al. Articial neural network approach to the analytic continuation problem[J]. Physical Review Letters, 2020, 124 (5): 056401.
DOI
|
149 |
YOON H , SIM J H , HAN M J . Analytic continuation via domain knowledge free machine learning[J]. Physical Review B, 2018, 98, 245101.
DOI
|
150 |
|
151 |
|
152 |
CHOWDHURY S , CAMSARI K Y , DATTA S . Accelerated quantum Monte Carlo with probabilistic computers[J]. Communications Physics, 2023, 6, 1- 9.
DOI
|
153 |
AADIT N A , GRIMALSI A , CARPENTIERI M . Massively parallel probabilistic computing with sparse ising machines[J]. Nature Electronics, 2022, 5, 460- 468.
DOI
|
154 |
FAUSEWEH B . Quantum many-body simulations on digital quantum computers: State-of-the-art and future challenges[J]. Nature Communications, 2024, 15, 1- 13.
DOI
|