CHINESE JOURNAL OF COMPUTATIONAL PHYSICS ›› 2011, Vol. 28 ›› Issue (6): 933-941.
Previous Articles Next Articles
WEN Rongji, TANG Gang, HAN Kui, XIA Hui, HAO Dapeng, XUN Zhipeng, CHEN Yuling
Received:
Revised:
Online:
Published:
Supported by:
Abstract: In order to study statistical properties of surface fluctuation in a Wolf-Villain(WV) model。maximal-and minimal-heigIlt distributions(MAHD and MIHD) of saturated surfaces in a(1+1)-dimensional WV model are investigated with theory of extreme value statistics.It shows that both MAHD and MIHD csn be fitted well with universal functions of different system sizes.They are asymmetrical.MAHD takes on a generalized Fisher-Tippett-Gumbel(FTG) distribution,a typical extreme value distribution function.MIHD,however,displays a slightly different distribution,a modified FTG distribution.
Key words: extreme value statistics, Wolf-Villain model, scaling behavior
CLC Number:
O469
WEN Rongji, TANG Gang, HAN Kui, XIA Hui, HAO Dapeng, XUN Zhipeng, CHEN Yuling. Extreme Value Statistics of Growth Surfaces in (1+1)-dimensional Wolf-Villain Model[J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 28(6): 933-941.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/
http://www.cjcp.org.cn/EN/Y2011/V28/I6/933