[1] 姜宗林,滕宏辉,刘云峰.气相爆轰物理的若干研究进展[J].力学进展,2012,42(2):129-140. [2] 孙锦山,朱建士.理论爆轰物理[M]. 北京:国防工业出版社,1995:88-172,386-395. [3] JU Y G. Recent progress and challenges in fundamental combustion research[J].Advances in Mechanics,2014, 44(1):1-72. [4] 吴望一.流体力学[M]. 北京:北京大学出版社, 2006:156-161. [5] 许爱国, 张广财, 李英骏,等. 非平衡与多相复杂系统模拟研究——Lattice Boltzmann动理学理论与应用[J]. 物理学进展, 2014, 34(3):136-167. [6] XU A G, ZHANG G C, GAN Y B, et al, Lattice Boltzmann modeling and simulation of compressible flows[J].Front Phys, 2012,7(5):582-600. [7] SUCCI S. The lattice Boltzmann equation for fluid dynamics and beyond[M]. Oxford:Clarendon Press, 2001: 77-176. [8] GAN Y B, XU A G, ZHANG G C,et al. Lattice BGK kinetic model for high-speed compressible flows: Hydrodynamic and nonequilibrium behaviors[J]. Europhysics Letter, 2013, 103 (24003): 1-6. [9] LIN C D, XU A G, ZHANG G C, et al. Polar-coordinate lattice Boltzmann modeling of compressible flows[J]. Physical Review E: Statistical Nonlinear & Soft Matter Physics,2014, 89(1):390-400. [10] CHEN F, XU A G, ZHANG G C, et al. Two-dimensional multiple-relaxation-time lattice Boltzmann model for compressible and incompressible flows[J]. Front Phys, 2014,9(2):246-254. [11] YAN B, XU A G, ZHANG G C, et al. Lattice Boltzmann model for combustion and detonation[J].Front Phys, 2013,8(1):94-110. [12] LIN C D, XU A G, ZHANG G C, et al. Polar coordinate lattice Boltzmann kinetic modeling of detonation phenomena[J]. Commun Theor Phys, 2014,62(5):737-748. [13] XU A G, LIN C D, ZHANG G C, et al. Multiple-relaxation-time lattice Boltzmann kinetic model for combustion[J]. Physical Review E: Statistical Nonlinear & Soft Matter Physics, 2014, 91(4):003300. [14] 许爱国,张广财,应阳君. 燃烧系统的离散Boltzmann建模与模拟研究进展[J]. 物理学报,2015, 64(18) :184701. [15] XU A G, ZHANG G C, GAN Y B. Discrete Boltzmann modeling of liquid-vapor system[J]. Eprint Arxiv, 2014. [16] GAN Y B, XU A G, ZHANG G C,et al. Discrete Boltzmann modeling of multiphase flows: hydrodynamic and thermodynamic non-equilibrium effects[J]. Soft Matter, 2015, 11. [17] 何雅玲,王勇,李庆.格子Boltzmann方法的理论及应用[M]. 北京:科学出版社,2011:48-49. [18] MINORU W, MICHISA T. Two-dimensional thermal model of the finite-difference lattice Boltzmann method with high spatial isotropy.[J]. Physical Review E: Statistical Nonlinear & Soft Matter Physics, 2003, 67(3Pt2):210-215. [19] 水鸿寿.一维流体力学差分方法[M].北京:国防工业出版社,1989:500-509. [20] 张宝平,张庆明,黄风雷.爆轰物理学[M].北京:兵器工业出版社,2001:64-79. |