[1] LINDL J D. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11):3933-4024. [2] LINDL J D, AMENDT P, BERGER R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2):339-491. [3] TAYLOR G. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes[J]. Proc Roy Soc, 1950, 201:192. [4] CLARK D S, HINKEL D E, EDER D C, et al. Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facility[J]. Physics of Plasmas, 2013, 20:056318. [5] EDWARDS M J, PATEL P K, LINDL J D, et al. Progress towards ignition on the National Ignition Facility[J]. Physics of Plasmas, 2013, 20:070501. [6] REGAN S P, EPSTEIN R, HAMMEL B A, et al. Hot-spot mix in ignition-scale inertial confinement fusion targets[J]. Physical Review Letters, 2013, 111:045001. [7] MA T, PATEL P K, IZUMI N,et al. Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions[J]. Physical Review Letters, 2013, 111:085004. [8] TOWN R P J, BRADLEY D K, KRITCHER A, et al. Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility[J]. Physics of Plasmas, 2014, 21:056313. [9] KRITCHER A L, TOWN R, BRADLEY D, et al. Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility[J]. Physics of Plasmas, 2014, 21:042708. [10] GU J F, DAI Z S, FAN Z F, et al. A new metric of the low-mode asymmetry for ignition target designs[J].Physics of Plasmas, 2014, 21:012704. [11] HAAN S W, LINDL J D, CALLAHAN D A, et al. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility[J]. Physics of Plasmas, 2011, 18:051001. [12] HAAN S W, POLLAINE S M, LINDI J D, et al. Design and modeling of ignition targets for the National Ignition Facility[J]. Physics of Plasmas, 1995, 2(6):2480. [13] MUNRO D H, CELLIERS P M, COLLINS G W, et al. Shock timing technique for the National Ignition Facility[J]. Physics of Plasmas, 2001, 8(5):2245. [14] YE W H, ZHANG W Y, HE X T. Stabilization of ablative Rayleigh-Taylor instability due to change of the Atwood number[J]. Physical Review E, 2002, 65:057401. [15] GU J F, DAI Z S, YE W H, et al. Simulation of high-adiabat ICF capsule implosion[J]. Chinese J Comput Phys, 2015, 32(6):662-668. [16] FENG G T,LAI D X,XU Y,et al. An artificial-scattering iteration method for calculating multigroup transfer problems[J]. Chinese J Comput Phys, 1999, 16(2):199-205. [17] LI S G, YANG R, HUANG X D. Transport synthetic acceleration methods for multi-group radiative transfer calculations[J]. Chinese J Comput Phys, 2014,31(5):505-513. [18] TAO Y X, ZHAO Q, CHEN F L. Numerical methods for laser ablation with phase change in two-dimensional code on structured meshes[J].Chinese J Comput Phys,2014,31(2):165-172. [19] VERDON C P, MCCRORY R L, MORSE R L, et al. Nonlinear effects of multifrequency hydrodynamic instabilities on ablatively accelerated thin shells[J]. Physics of Fluids, 1982, 25:1653. [20] DAHLBURG J P, GARDNER J H. Ablative Rayleigh-Taylor instability in 3-dimensions[J]. Physical Review A, 1990, 41:5695. [21] GAMALY E G, LEBO I G, ROZANOV V B, et al. Nonlinear stage in the development of hydrodynamic instability in laser targets[J]. Laser Partical Beams, 1990, 8:173. [22] HAAN S W. Weakly nonlinear hydrodynamic instabilities in inertial fusion[J]. Physics Fluids B, 1991, 3:2349. [23] OFER D, SHVARTS D, ZINAMON Z, et al. Mode coupling in nonlinear Rayleigh-Taylor instability[J]. Physics Fluids B, 1992, 4:3549. [24] HAAN S W. The onset of non-linear saturation for Rayleigh-Taylor growth in the presence of a full spectrum of modes[J]. Physics Review A, 1989, 39:5812. |