[1] HARTEN A. High-resolution schemes for hyperbolic conservation-laws[J]. J Comput Phys, 1983, 49(3):357-393. [2] SHU C W. High order weighted essentially nonoscillatory schemes for convection dominated problems[J]. SIAM Rev, 2009, 51(1):82-126. [3] COCKBURN B,KARNIADAKIS G E,SHU C W. The development of discontinuous Galerkin methods[M]. Springer,2000. [4] TADMOR E. The numerical viscosity of entropy stable schemes for systems of conservation laws: I[J]. Math Comp, 1987, 49(179):91-103. [5] TADMOR E. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems[J]. Acta Numer, 2003, 12(1):451-512. [6] TADMOR E, ZHONG W G. Entropy stable approximations of Navier-Stokes equations with no artificial numerical viscosity[J]. J Hyperbolic Diff Eq, 2006, 3(03):529-559. [7] ISMAIL F, ROE P L. Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks[J]. J Comput Phys, 2009, 228(15):5410-5436. [8] LUO Li, FENG Jianhu, TANG Xiaojuan, et al. High resolution entropy stable schemes for hyperbolic conservation laws[J]. Chinese J Comput Phys, 2010, 27(5):671-678. [9] CHENG X H, NIE Y F, FENG J H, et al. Self-adjusting entropy-stable scheme for compressible Euler equations[J]. Chin Phys B, 2015, 24(2):020202. [10] FJORDHOLM U S, MISHRA S, TADMOR E. Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws[J]. SIAM J Numer Anal, 2012, 50(2):544-573. [11] REN Jiong, FENG Jianhu, LIANG Nan, et al. Adaptive artificial viscosity entropy stable scheme for hyperbolic conservation laws[J]. J Aerosp Power, 2014, 29(8):1930-1939. [12] HARTEN A, HYMAN J M. Self-adjusting grid methods for one-dimensional hyperbolic conservation-laws[J]. J Comput Phys, 1983, 50(2):235-269. [13] XU Xihua, NI Guoxi. A high-order moving mesh kinetic scheme based on WENO reconstruction for compressible flows[J]. Chinese J Comput Phys,2013,30(4):509-514. [14] HAN E, LI J Q, TANG H Z. An adaptive GRP scheme for compressible fluid flows[J]. J Comput Phys, 2010, 229(5):1448-1466. [15] TANG H Z, TANG T. Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws[J]. SIAM J Numer Anal, 2003, 41(2):487-515. [16] LAX P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation[J]. Comm on Pure Appl Math, 1954, 7(1):159-193. [17] LAX P D. Hyperbolic systems of conservation laws and the mathematical theory of shock waves[C]. 11th of SIAM Regional Conference Lectures in Applied Mathematics, 1973. [18] GOTTLIEB S, KETCHESON D I, SHU C W. High order strong stability preserving time discretizations[J]. J Sci Comput, 2009, 38(3):251-289. [19] YANG X B, HUANG W Z, QIU J X. A moving mesh WENO method for one-dimensional conservation laws[J]. SIAM J Sci Comput, 2012, 34(4):2317-2343. |