[1] HE X T, LI J W, FAN Z F, et al. A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion[J]. Physics of Plasmas, 2016, 23,082706. [2] TABAK M, HAMMER J, GLINSKY M E, et al. Ignition and high gain with ultrapowerful lasers[J]. Physics of Plasmas, 1994, 1:1626-1634. [3] LINDL J D. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2:3933-4024. [4] LINDL J D, AMENDT P, BERGER R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11:339-491. [5] ATZENI S, MEYER-TER-VHEN J. The physics of inertial fusion[M]. Oxford:Clarendon Press, 2004. [6] HAAN S W, LINDL J D, CALLAHAN D A, et al. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility[J]. Physics of Plasmas, 2011, 18:051001. [7] REGAN S P, EPSTEIN R, HAMMEK B A, et al. Hot-spot mix in ignition-scale implosions on the NIF[J]. Physics of Plasmas, 2012, 19:056307. [8] HAMMEL B A, SCOTT H A, REGAN S P, et al. Diagnosing and controlling mix in National Ignition Facility implosion experiments[J]. Physics of Plasmas, 2011, 18:056310. [9] REGAN S P, EPSTEIN R, HAMMEL B A, et al. Hot-spot mix in ignition-scale inertial confinement fusion targets[J]. Physics Review Letters, 2013, 111:045001. [10] MACFARLANE J, GOLOVKIN I E, WANG P, et al. SPECT3D:A multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output[J]. High Energy Density Physics, 2006, 3:181. [11] REGAN S P, DELETTREZ J A, MARSHALL F J, et al. Shell mix in the compressed core of spherical implosions[J]. Physics Review Letters, 2002, 89:085003. [12] BAUMGAERTEL J A, BRADLEY P A, HSU S C, et al. Observation of early shell-dopant mix in OMEGA direct-drive implosions and comparisons with radiation-hydrodynamic simulations[J]. Physics of Plasmas, 2014, 21:052706. [13] MA T, PATEL P K, IZUMI N, et al. Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions[J]. Physics Review Letters, 2013, 111:085004. [14] HURRICANE O A, CALLAHAN D A, CASEY D T, et al. Fuel gain exceeding unity in an inertially confined fusion implosion[J]. Nature, 2014, 506:343. [15] PARK H S, HURRICANE O A, CALLAHAN D A, et al. High-adiabat high-foot inertial confinement fusion implosion experiments on the National Ignition Facility[J]. Physics Review Letters, 2014, 112:055001. [16] EDWARDS M J, PATEL P K, LINDL J D, et al. Progress towards ignition on the National Ignition Facility[J]. Physics of Plasmas, 2013, 20:070501. [17] KRAMERS H A. On the theory of X-ray absorption and of the continuous X-ray spectrum[J]. Philosophical Magazine Series 6, 2013, 46:836-831. [18] SPITZER L. Physics of fully ionized gases[M]. New York:Interstellar Science, 1962. [19] 王尚武, 张树发, 马燕云. 粒子输运问题的数值模拟[M]. 北京:国防工业出版社, 2013 [20] FAN Z F, LIU B, LIU J, et al. Ignition conditions relaxation for central hot-spot ignition with an ion-electron non-equilibrium model[J]. Physics of Plasmas, 2016, 23:010703. [21] 范征锋, 刘彬,刘杰,等. 离子-电子非平衡机制降低中心热斑点火条件[J]. 强激光与粒子束, 2015, 27(8):082001. |