[1] 滕宏辉,姜宗林,韩肇元. 环形激波绕射、反射和聚焦的数值模拟研究[J]. 力学学报, 2004, 36(1):9-15. [2] 董刚,叶经方,范宝春. 激波聚焦反射的实验和数值研究[J]. 高压物理学报,2006, 20(4):359-364. [3] 何立明,荣康,曾昊,等. 激波聚焦及起爆爆震波的研究进展[J]. 推进技术,2015,36(10):1441-1458. [4] TAKAYAMMA K, SAITO T. Shock wave/geophysical and medical applications[J]. Annual Review of Fluid Mechanics, 2004, 36:347-379. [5] CHANCK. Collision of a shock wave with obstacles in a combustible mixture[J]. Combustion and Flame, 1995, 100:341-348. [6] 王春,韩肇元,司徒明. 激波聚焦引燃可燃混合气体的实验研究[J]. 推进技术,2004,25(1):78-81. [7] GRIFAND B E, KHOMOK S V, BARTENEV A M, et al. Detonation and deflagration initiation at the focusing of shock wave in combustible gaseous mixture[J]. Shock Waves, 2000, 10(3):197-204. [8] 滕宏辉,张德良,李辉煌,姜宗林. 用环形激波聚焦实现爆轰波直接起爆的数值模拟[J]. 爆炸与冲击,2005,25(6):512-518. [9] 吴望一. 流体力学(上册)[M]. 北京:北京大学出版社,1982. [10] LANDAU L D, LIFSHITZ E M. Fluid mechanics[M]. Beijing:Pergamon, 1959. [11] ZEL'DOVICH Y B, RAIZER Y P. Physics of shock waves and high-temperature hydrodynamics phenomena[M]. New York:Academic, 1967. [12] CHAPMAN S, COWLING T G. The mathematical theory of non-uniform gases[M]. 3nd ed. Cambridge:Cambridge University Press, 1970. [13] WANG C, UHLENBECK G E. Transport phenomena in polyatomic gases[R]. Report No CM-681, 1951. [14] MONCHICK L, YUN K S, MASON E A. Formal kinetic theory of transport phenomena in polyatomic gas mixtures[J]. The Journal of Chemical Physics, 1963, 39(3):654-669. [15] SHERMAN D S. A low-density wind-tunnel study of shock-wave structure and relaxation phenomena in gases[R]. NACA TN-3298, 1955. [16] PRANGSMA G J, ALBERGA A H, BEENAKKER J J M. Ultrasonic determination of the volume viscosity of N2, CO, CH4 and CD4 between 77 and 300 K[J]. Physics, 1973, 64(2):278-288. [17] ASH R L, ZIKERWAR A J, ZHENG Z Q. Second coefficient of viscosity in air[R]. NASA CR-187783, 1991. [18] GRAVES R E, ARGROW B M. Bulk viscosity:Past to present[J]. Journal of Thermophysics and Heat Transfer, 1999, 13(3):337-342. [19] DUKHIN A S, GOETZ P J. Bulk viscosity and compressibility measurement using acoustic spectroscopy[J]. The Journal of Chemical Physics, 2009, 130, 124519:1-13. [20] STOKES G G. On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids[J]. Transactions of the Cambridge Philosophical Society, 1845, 8(22):287-342 [21] ELIZAROVA T G, KHOKHLOV A A, MONTERO S. Numerical simulation of shock wave structure in nitrogen[J]. Physics of Fluids, 2007, 19, 068102. [22] CHIKITKIN A V, ROGOV B V, RIRSKY G A, et al. Effect of bulk viscosity in supersonic flow past spacecraft[J]. Applied Numerical Mathmatics, 2015, 93:47-60. [23] BAHMANI F, CRAMER M S. Suppression of shock-induced separation in fluids having large bulk viscosities[J]. Journal of Fluid Mechanics, 2014, 756:1-10. [24] BILLET G, GIOVANGIGLI V, GASSOWSKI G D. Impact of volume viscosity on a shock/hydrogen bubble interaction[R]. Ecole Polytechnique Centre de Mathématiques Appliquées, 2007, UMR CNRS-7641. [25] FRU G, JANIGA G, THEVENIN D. Impact of volume viscosity on the structure of turbulent premixed flames in the thin reaction zone regime[J]. Flow Turbulence Combust, 2012, 88:451-478. [26] 李馨东, 胡宗民, 姜宗林. 可压缩流体体积黏性的连续介质理论[J]. 中国科学:物理学力学天文学, 2016, 46(3):034701. [27] LI Xindong, HU Zongmin, JIANG Zonglin. Continuum perspective of bulk viscosity in compressible fluids[J]. Journal of Fluid Mechanics, 2017,812(1):966-990. [28] 李馨东. 可压缩流动体积粘性的连续介质理论及其数值研究[D]. 北京:中国科学院大学, 2016. [29] ANDERSON J D. Hypersonic and high-temperature gas dynamics[M]. 2nd ed. AIAA, 2006. [30] 童秉纲, 孔祥言, 邓国华. 气体动力学[M]. 第2版. 北京:高等教育出版社, 2012. [31] PARKER J G. Rotational and vibrational relaxation in diatomic gases[J]. Physics of Fluids, 1959, 2(4):499-462. [32] VINCENTI W G, KRUGER G H. Introduction to physical gas dynamics[M]. Krieger, 1965. [33] LI Xindong, HU Zongmin, ZHANG Deliang, et al. A new flux splitting method based on AUSM scheme[J]. Chinese Journal of Computational Physics, 2015, 32(1):1-12. |