[1] 费辉,张云泉,王可,等. 基于GPU的分子动力学模拟并行化及实现[J]. 计算机科学, 2011, 38(9):276-278. [2] VERLET L. Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules[J]. Physical Review, 1967, 159(1):98-103. [3] MAYO P, MESIROV J P, BOGHOSIAN B M. Parallel approaches to short range molecular dynamics simulations[C]//Proceedings of Conference on Supercomputing, New York, USA:ACM Press,1991:462-470. [4] 刘青昆,滕人达,刘凤,等. 多核并行技术在分子动力学模拟中的应用[J]. 计算机工程与设计,2011, 32(10):3395. [5] LIANG Jie, LI Kenli, SHI Lin, et al. Accelerating solidification process simulation for large-sized system of liquid metal atoms using GPU with CUDA[J]. Journal of Computational Physics, 2014, 257:521-535. [6] HOU Qing, LI Min, ZHOU Yulu, et al. Molecular dynamics simulations with many-body potentials on multiple GPUs-The implementation, package and performance[J]. Comput Phys Comm, 2013, 184:2091-2101 [7] BROWNA W Michael, WANG Peng, PLIMPTON Steven J, et al. Implementing molecular dynamics on hybrid high performance computers-short range forces[J]. Comput Phys Comm, 2011, 182:898-911. [8] QI J, LI K C, JIANG H, et al. GPU-accelerated DEM implementation with CUDA[J]. Int J Computational Science and Engineering, 2015,11(3):330-337. [9] 徐骥,葛蔚,任瑛,等. Particle-mesh ewald (PME)算法的GPU加速[J]. 计算物理, 2010,27(4):548-554. [10] 丁科,谭营. GPU通用计算及其在计算智能领域的应用[J]. 智能系统学报, 2015,10(1):1-11. [11] 韩苗苗. 4H-SiC辐照损伤分子动力学模拟初步研究[D]. 哈尔滨:哈尔滨工程大学, 2013. [12] RAPAPORT D C. Art of molecular dynamics simulation[M]. Cambridge University Press, 1995:1-30. [13] 张邦维,胡望宇,舒小林. 嵌入原子方法理论及其在材料科学中的应用——原子尺度材料设计理论[M]. 长沙:湖南大学出版社,2002. [14] 邹岩,杨志义,张凯龙. CUDA并行程序的内存访问优化技术研究[J]. 计算机测量与控制, 2009,17(12):2504-2506. [15] SANDERS Jason, KANDRAT Edward. GPU高性能编程CUDA实战[M]. 聂雪军,译. 北京:机械工业出版社, 2011. |