[1] DAVIS S F. Simplified second order Godunov type methods[J]. SIAM Journal of Scientific and Statistical Computing, 1988, 9:445-473. [2] DORING W. Uberder detonation vergang in gasen[J]. Ann Phys, 1943,43(5):421-436. [3] MARTELOT S. NKONGA B, SAUREL R. Liquid and liquid-gas flows at all speeds[J].J Comput Phys, 2013,255:53-82. [4] PAPALEXANDRIS M V, LEONARD A, DIMOTAKIS P E. Unsplit schemes for hyperbolic conservation laws with source terms in one space dimension[J]. J Comput Phys, 1997,134(1):31-61. [5] WESCOTT B L, STEWART D S, DAVIS W C.Equation of state and reaction rate for condensed phase explosives[J]. Journal of Applied Physics, 2005,98:053514. [6] ZELDOVICH Ya B. On the theory of the propagation of detonation in gaseous systems[J]. Sov Phys JETP, 1940,10(5):542-568. [7] BOURLIOUX A, MAJDA A, VICTOR ROYTBURD. Theoretical and numerical structure for unstable one-dimensional detonations[J]. Siam J Appl Math, 1991,51(2):303-343. [8] TRUESDELL C. Rational thermodynamics[M]. New York:McGraw-Hill, 1984. [9] TORO E F. Riemann solvers and numerical methods for fluid dynamics:A practical introduction[M]. Spronger Berlin Heidelberg, 2009. [10] TORO E F, CASTRO C, LEE B J. A novel numerical flux for the 3D Euler equations with general equation of state[J]. J Compute Phys, 2015, 303:80-94. [11] 李俊红,张亮,俞继军,等.高超声速可压缩流中粗糙壁热流研究[J].计算物理,2017,34(2):165-174. [12] 蒋华,董刚,陈霄.激波与火焰面相互作用数值模拟的GPU加速[J].计算物理,2016,33(1):23-29. [13] AZARENOK B N, TANG T. Second-order Godunov-type scheme for reactive flow calculations on moving meshes[J], J Comput Phys, 2005,206:48-80. [14] BEAR M R, NUNZITO J W. A two-phase mixture theory for the deflagration-to-detonation transition(DDT) in reactive granular materials[J]. Int J Multiphase Flow, 1986,12(6):861-889. [15] WANG C, JIANG Z, GAO Y. Half-cell law of regular cellular detonation[J]. Chinese Physics Letters, 2008, 25(10):3704-3707. [16] FICKETT W, DAVIS W C. Detonation:Theory and experiment[M]. Dover Publications Inc, Mineola, NY, 1979. [17] FICKETT W, WOOD W C. Flow calculations for pulsating one-dimensional detonations[J]. Phys Fluid, 1966,9(5):903-916. [18] SAUREL R, PETIPAS F, BERRY R. Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[J]. Journal of Computational Physics, 2009, 228:1678-1712. [19] NI G X, JIANG S, WANG S H. A remapping-free, efficient Riemann-solvers based, ALE method for multi-material fluids with general EOS[J]. Computers and Fluids, 2013,71:19-27. [20] TORO E F. Riemann solvers and numerical methods for fluid dynamics[M]. 3rd ed.Springer-Verlag Berlin Heidelberg, 2009. [21] ZENG X Y, XIAO M, NI G X.An efficient numerical method for reactive flow with general equation of states (one dimensional)[J]. Int J Numer Meth Fluids, DOI:10.1002/fld.4233. [22] 曾现洋.多相反应流的数值模拟方法[D].中国工程物理研究院学位论文,2016. [23] 曾现洋,倪国喜.振动NACA0012翼型的移动网格数值模拟[J].计算物理,2016,33(3):266-272. [24] VON NEUMANN J. Theory of detonation waves[R].Institute for advanced study Princeton N J, National Defense Research, 1942. |