[1] 贾祖朋, 张树道, 蔚喜军. 多介质流体动力学计算方法[M]. 北京:科学出版社, 2014, 1-17. [2] TOTH G. The Δ·B=0 constraint in shock-capturing magnetohydrodynamics codes[J]. Comput Phys, 2000, 161(2):605-652. [3] WENSENBURG M. Efficient MHD Riemann solvers for simulations on unstructured triangular grids[J]. J Numer Math, 2002, 10(1):37-71. [4] GALLICE G. Positive and entropy stable Godunov-type schemes for gas dynamicsand MHD equations in Lagrangian or Eulerian coordinates[J]. Numer Math, 2003, 94(4):673-713. [5] Von NEUMANN J, RICHTMYER R D. A method for the numerical calculations of hydrodynamical shocks[J]. J Appl Phys, 1950, 21(3):232-238. [6] CARAMANA E J, BURTON D E, SHASHKOV M J, et al. The construction of compatible hydrodynamics algorithms utilizing conservation of total energy[J]. J Comput Phys, 1998, 146(1):227-262. [7] CARAMANA E J, SHASHKOV M J, WHALEN P P. Formulations of artificial viscosity for multi-dimensional shock wave computations[J]. J Comput Phys, 1998, 144(1):70-97. [8] CAMPBELL J C, SHASHKOV M J. A tensor artificial viscosity using a mimetic finite difference algorithm[J]. J Comput Phys, 2001, 172(2):739-765. [9] KOLEV T V, RIEBEN R N. A tensor artificial viscosity using a finite element approach[J]. J Comput Phys, 2009, 228:8336-8366. [10] DAI Z, WU J, LIN Z, et al. Subzonal pressure methods in Lagrangian algorithm of two-dimensional three-temperature radiation hydrodynamics[J]. Chinese Journal of Computational Physics, 2010, 27(3):326-334. [11] GODUNOV S K. A difference scheme for numerical computation of discontinue solution of hydrodynamic equations[J]. Mathematics Sbornik, 1959, 47:271-306. [12] MAIRE P H, ABGRALL R, BREIL J, et al. A cell-centered Lagrangian scheme for two-dimensional compressible flows problems[J]. SIAM J Sci Comput, 2007, 29:1782-1824. [13] GEORGES G, BREIL J, MAIRE P H. A 3D GCL compatible cell-centered Lagrangian scheme for solving gas dynamics equations[J]. J Comput Phys, 2016, 305:921-941. [14] LOUBERE R, MAIRE P H, VACHAL P, 3D staggered Lagrangian hydrodynamics scheme with cell-centered Riemann solver-based artificial viscosity[J]. Int J Numer Meth Fluids, 2013, 72(1):22-42. [15] SUN Y, YU M, REN Y, et al. A finite volume method for 2D Lagrangian hydrodynamics based on characteristics theory[J]. Chinese Journal of Computational Physics, 2011, 28(1):19-26. [16] SUN Y, JIA A, YU M, et al. A second order Lagrangian scheme based on characteristics theory for two-dimensional compressible flows[J]. Chinese Journal of Computational Physics, 2012, 29(6):791-798. [17] XU X, GAO Z, DAI Z. A 3D staggered Lagrangian scheme for ideal magnetohydrodynamics equations on unstructured meshes[J]. Int J Numer Meth Fluids, 2019, 90:584-602. [18] XU X, DAI Z, GAO Z. A 3D cell centered Lagrangian scheme for the ideal magnetohydrodynamics equations on unstructured meshes[J]. Comput Methods Appl Mech Engrg, 2018, 342:490-508. [19] BENSON D J. Computational methods in Lagrangian and Eulerian hydrocodes[J]. Comput Method Appl Mech Eng, 1992, 99(2-3):235-394. [20] MAIRE P H, NKONGA B. Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics[J]. J Comput Phys, 2008, 228:799-821. [21] BRIO M, WU C C. An upwind difference scheme for the equations of ideal magnetohydrodynamics[J]. J Comput Phys, 1988, 75(2):400-422. [22] BALSARA D S, SPICER D. A staggered mesh algorithm using high order Godunov fluxs to ensure solenoidal magnetic fields in magnetohydrodynamic simulations[J]. J Comput Phys, 1999, 149(1):270-292. [23] BALSARA D S. Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics[J]. J Comput Phys, 2012, 231:7504-7517. |