Chinese Journal of Computational Physics ›› 2021, Vol. 38 ›› Issue (3): 361-370.DOI: 10.19596/j.cnki.1001-246x.8245
• Research Reports • Previous Articles Next Articles
Pengdi LI1,2(), Jun LIU2,3, Qirong ZHENG2,3, Chuanguo ZHANG2,3, Yonggang LI2,3,*(
), Yongsheng ZHANG2,3, Gaofeng ZHAO1,*(
), Zhi ZENG2,3
Received:
2020-06-22
Online:
2021-05-25
Published:
2021-09-30
Contact:
Yonggang LI, Gaofeng ZHAO
CLC Number:
Pengdi LI, Jun LIU, Qirong ZHENG, Chuanguo ZHANG, Yonggang LI, Yongsheng ZHANG, Gaofeng ZHAO, Zhi ZENG. Dynamics Modeling of Charged Defects in Si under B Ion Implantation[J]. Chinese Journal of Computational Physics, 2021, 38(3): 361-370.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8245
反应事件(不含团簇) | 反应事件(含团簇) |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|
Table 1 Defect reaction events considered in the model
反应事件(不含团簇) | 反应事件(含团簇) |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|
缺陷类型 | Ef/eV | D0/(cm2·s-1) | Em/eV | ΔEe/eV | ΔEh/eV | σe/cm2 | σh/cm2 | θ |
I2- | 5.37 | 10-3 | 0.33 | 0.11 | 3×10-14 | |||
I- | 4.61 | 10-3 | 0.54 | 0.26 | 1.01 | 3×10-16 | 3×10-14 | |
I0 | 4.06 | 10-3 | 0.40 | 0.62 | 0.86 | 3×10-15 | 3×10-15 | |
I+ | 3.73 | 10-3 | 0.37 | 0.47 | 0.50 | 3×10-14 | 3×10-16 | |
I2+ | 3.68 | 10-3 | 1.10 | 0.65 | 3×10-14 | |||
V2- | 4.33 | 1.5×10-2 | 0.10 | 0.09 | 3×10-14 | |||
V- | 3.87 | 1.3×10-3 | 0.19 | 0.40 | 1.03 | 3×10-16 | 3×10-14 | |
V0 | 3.69 | 1.3×10-3 | 0.36 | 1.07 | 0.72 | 3×10-15 | 3×10-15 | |
V+ | 4.07 | 9.6×10-3 | 0.44 | 0.99 | 0.05 | 3×10-14 | 3×10-16 | |
V2+ | 4.55 | 9.6×10-3 | 0.71 | 0.13 | 3×10-14 | |||
BS- | 0 | 1.075 | 3×10-14 | 1 | ||||
BS0 | 0 | 0.045 | 1×10-20 | 4 | ||||
BI- | 0.72 | 1.2×10-3 | 0.32 | 0.37 | 3×10-14 | |||
BI0 | 0.63 | 1.2×10-3 | 0.40 | 0.13 | 0.75 | 3×10-15 | 3×10-15 | |
BI+ | 1.13 | 1.2×10-3 | 0.95 | 0.99 | 3×10-14 | |||
I2 | 6.52 | |||||||
V2 | 5.57 | |||||||
BI2 | 5.4 | |||||||
B2 | 0.9 | |||||||
BI2 | 2.2 | |||||||
B2I2 | 4.4 |
Table 2 Physical parameters of defect and charge reactions in Si (Ef defect formation energy, D0 diffusion pre-exponential factor, Em migration energy, ΔEe/h activation energy for electron/hole emission, σe/h capture cross section, θ defect-state degeneracy.)
缺陷类型 | Ef/eV | D0/(cm2·s-1) | Em/eV | ΔEe/eV | ΔEh/eV | σe/cm2 | σh/cm2 | θ |
I2- | 5.37 | 10-3 | 0.33 | 0.11 | 3×10-14 | |||
I- | 4.61 | 10-3 | 0.54 | 0.26 | 1.01 | 3×10-16 | 3×10-14 | |
I0 | 4.06 | 10-3 | 0.40 | 0.62 | 0.86 | 3×10-15 | 3×10-15 | |
I+ | 3.73 | 10-3 | 0.37 | 0.47 | 0.50 | 3×10-14 | 3×10-16 | |
I2+ | 3.68 | 10-3 | 1.10 | 0.65 | 3×10-14 | |||
V2- | 4.33 | 1.5×10-2 | 0.10 | 0.09 | 3×10-14 | |||
V- | 3.87 | 1.3×10-3 | 0.19 | 0.40 | 1.03 | 3×10-16 | 3×10-14 | |
V0 | 3.69 | 1.3×10-3 | 0.36 | 1.07 | 0.72 | 3×10-15 | 3×10-15 | |
V+ | 4.07 | 9.6×10-3 | 0.44 | 0.99 | 0.05 | 3×10-14 | 3×10-16 | |
V2+ | 4.55 | 9.6×10-3 | 0.71 | 0.13 | 3×10-14 | |||
BS- | 0 | 1.075 | 3×10-14 | 1 | ||||
BS0 | 0 | 0.045 | 1×10-20 | 4 | ||||
BI- | 0.72 | 1.2×10-3 | 0.32 | 0.37 | 3×10-14 | |||
BI0 | 0.63 | 1.2×10-3 | 0.40 | 0.13 | 0.75 | 3×10-15 | 3×10-15 | |
BI+ | 1.13 | 1.2×10-3 | 0.95 | 0.99 | 3×10-14 | |||
I2 | 6.52 | |||||||
V2 | 5.57 | |||||||
BI2 | 5.4 | |||||||
B2 | 0.9 | |||||||
BI2 | 2.2 | |||||||
B2I2 | 4.4 |
Fig.5 Depth distribution of B concentration in Si in simulation and experiment[4] under 30 keV B ion implantation with fluence of 2×1014 cm-2 at 300 K (Black line is the depth distribution of initial B concentration.)
Fig.7 (a) Depth distributions of point defect concentration in Si before and after annealing to equilibrium; (b) Depth distributions of cluster concentration after annealing to equilibrium, under 30 keV B ion implantation with fluence of 2×1014 cm-2 at room temperature
1 | PELAZ L, MARQUÉS L A, ABOY M, et al. Front-end process modeling in silicon[J]. Eur Phys J B, 2009, 72 (3): 323- 359. |
2 |
ZOGRAPHOS N, ZECHNERB C, IMARTIN-BRAGADOC G, et al. Multiscale modeling of doping processes in advanced semiconductor devices[J]. Mater Sci Semicond Process, 2017, 62, 49- 61.
DOI |
3 | YUAN G W, HANG X D, et al. Progress in numerical methods for radiation diffusion equations[J]. Chinese J Comput Phys, 2009, 26 (4): 475- 500. |
4 | ZHANG R, TANG Z P. Multiscale simulation of time and space in damage of a pre-tensioned aluminum plate under laser irradiation[J]. Chinese J Comput Phys, 2009, 26 (5): 743- 750. |
5 |
MATHIOT D, PFISTER J C. Dopant diffusion in silicon A consistent view involving nonequilibrium defects[J]. J Appl Phys, 1984, 55 (10): 3518.
DOI |
6 |
SOLMI S, BARUFFALDI F, CANTERI R. Diffusion of boron in silicon during post-implantation annealing[J]. J Appl Phys, 1991, 69 (4): 2135.
DOI |
7 |
COWERN N E, WALLE G F, ZALM P C, et al. Reactions of point defects and dopant atoms in silicon[J]. Phys Rev Lett, 1992, 69 (1): 116- 119.
DOI |
8 |
ZHU J, RUBIA T D D R, YANG L H Y. Ab initio pseudopotential calculations of B diffusion and pairing in Si[J]. Phys Rev B, 1996, 54 (7): 4741- 4747.
DOI |
9 |
SADIGH B, LENOSKY T J, THEISS S K, et al. Mechanism of boron diffusion in silicon: An ab initio and kinetic Monte Carlo study[J]. Phys Rev Lett, 1999, 83 (21): 4341- 4344.
DOI |
10 |
NAPOLITANI E, de SALVADOR D, STORTI R, et al. Room temperature migration of boron in crystalline silicon[J]. Phys Rev Lett, 2004, 93 (5): 055901.
DOI |
11 |
JÄGER H U. Point defect-based modeling of diffusion and electrical activation of ion implanted boron in crystalline silicon[J]. J Appl Phys, 1995, 78 (1): 176.
DOI |
12 |
FAHEY P M, GRIFFIN P B, PLUMMER J D. Point defects and dopant diffusion in silicon[J]. Rev Mod Phys, 1989, 61 (2): 289- 384.
DOI |
13 |
BACCUS B, WADA T, SHIGYO N. A study of nonequilibrium diffusion modeling-applications to rapid thermal annealing and advanced bipolar technologies[J]. IEEE Trans Electron Devices, 1992, 39 (3): 648.
DOI |
14 |
UEMATSU M. Simulation of boron, phosphorus, and arsenic diffusion in silicon based on an integrated diffusion model, and the anomalous phosphorus diffusion mechanism[J]. J Appl Phys, 1997, 82 (5): 2228.
DOI |
15 | PICHLER P. Intrinsic point defects, impurities, and their diffusion in silicon[M]. New York: Springer-Verlag Wien, 2004: 1- 554. |
16 |
ORTIZ C J, CRISTIANOB F, COLOMBEAU B. Modeling of extrinsic extended defect evolution in ion-implanted silicon upon thermal annealing[J]. Mater Sci Eng B, 2004, 114-115, 184- 192.
DOI |
17 |
MARTIN-BRAGADO I, CASTRILLO P, JARAIZ M, et al. Fermi-level effects in semiconductor processing: A modeling scheme for atomistic kinetic Monte Carlo simulators[J]. J Appl Phys, 2005, 98 (5): 053709.
DOI |
18 |
WINDL W, BUNEA M M, STUMPF R, et al. First principles study of boron diffusion in silicon[J]. Phys Rev Lett, 1999, 83 (21): 4345- 4348.
DOI |
19 |
CENTONI S A, SADIGH B, GILMER G H, et al. First principles calculation of intrinsic defect formation volumes in silicon[J]. Phys Rev B, 2005, 72 (19): 195206.
DOI |
20 | ZHANG J, ASHIZAWA Y, OKA H. Barrier to migration of the intrinsic defects in silicon in different charged system using First-principles calculations[J]. Mater Res Soc Symp Proc, 2005, 864, E9.17.1. |
21 |
WRIGHT A F. Density-functional-theory calculations for the silicon vacancy[J]. Phys Rev B, 2006, 74 (16): 165116.
DOI |
22 |
GANCHENKOVA M G, SUPRYADKINA I A, ABGARYAN K K, et al. Influence of the ab-initio calculation parameters on prediction of energy of point defects in silicon[J]. Modern Electronic Materials, 2015, 1, 103- 108.
DOI |
23 |
ABOY M, SANTOS I, PELAZ L, et al. Modeling of defects dopant diffusion and clustering in silicon[J]. J Comput Electron, 2014, 13 (1): 40- 58.
DOI |
24 | TANG P F, ZHENG Q R, LI Y G, et al. Cluster dynamics modeling with spatial correlations in cascades[J]. Chinese J Comput Phys, 2019, 36 (5): 586- 594. |
25 | LI Y G, ZHOU W H, NING R H, et al. A cluster dynamics model for accumulation of helium in tungsten under helium ions and neutron irradiation[J]. Prog Mater Sci, 2012, 11 (5): 1547- 1568. |
26 |
HU L, LI Y G, ZHANG C G, et al. Cluster dynamics simulation of deuterium retention behaviors in irradiated beryllium[J]. Rsc Advances, 2015, 5 (81): 65750- 65756.
DOI |
27 |
MARTIN-BRAGADO I, BORGES R, BALBUENA J P, et al. Kinetic Monte Carlo simulation for semiconductor processing: A review[J]. Prog Mater Sci, 2018, 92, 1- 32.
DOI |
28 |
SILLS R B AND CAI W. Efficient time integration in dislocation dynamics[J]. Modelling Simul Mater Sci Eng, 2014, 22 (2): 025003.
DOI |
29 |
LI Y G, YANG Y, SHORT M P, et al. IM3D: A parallel Monte Carlo code for efficient simulations of primary radiation displacements and damage in 3D geometry[J]. Sci Rep, 2015, 5, 18130.
DOI |
30 |
MYERS S M, COOPER P J, WAMPLER W R. Model of defect reactions and the influence of clustering in pulse-neutron-irradiated Si[J]. J Appl Phys, 2008, 104 (4): 044507.
DOI |
31 |
WAMPLER W R, MYERS S M. Model for transport and reaction of defects and carriers within displacement cascades in gallium arsenide[J]. J Appl Phys, 2015, 117 (4): 045707.
DOI |
32 | SEEBAUER E G, KRATZER M C. Charged point defects in semiconductors[J]. Mater Sci Eng R, 2006, 55, 51- 149. |
33 | JEONG J-W, OSHIYAMA A. Atomic and electronic structures of a boron impurity and its diffusion pathways in crystalline Si[J]. Phys Rev B, 2001, 64 (23): 235204. |
34 | SADIGH B, LENOSKY T J, THEISS S K. Mechanism of boron diffusion in silicon: An ab initio and kinetic Monte Carlo study[J]. Phys Rev Lett, 1999, 83 (21): 4341- 4344. |
35 | MIRABELLA S, DE SALVADOR D, NAPOLITANI E. Mechanisms of boron diffusion in silicon and germanium[J]. J Appl Phys, 2013, 113 (3): 031101. |
[1] | YIN Haifeng, ZENG Chunhua, CHEN Wenjing. Plasmon Excitations in Two-dimensional Binary Silicon Carbide Nanostructures [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(5): 603-609. |
[2] | MA Jianli, FU Zhifen, LI Yang, TANG Xudong, ZHANG Heming. Electron Mobility in Silicon Under Uniaxial[110] Stress [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(4): 483-488. |
[3] | ZHOU Shuang, LIU Guili, JIANG Yan, SONG Yuanyuan. Adsorbing of Magnesium on Phosphorus-Doping Single-Walled Silicon Nanotubes: First-principles Study [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 33(5): 554-560. |
[4] | LIU Futi, CHENG Yan, YANG Fubin, CHENG Xiaohong, CHEN Xlangrong. Electron Transport in Silicon Nanoscale Junctions [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 30(6): 943-948. |
[5] | ZHANG Yan, DONG Gang, YANG Yintang, WANG Ning. Thermal Management of 3D Integrated Circuits Considering Horizontal Heat Transfer Effect [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 30(5): 753-758. |
[6] | WANG Fengjuan, ZHU Zhangming, YANG Yintang, WANG Ning. A Thermal Model for Top Layer of Three-dimensional Integrated Circuits with Through Silicon Via [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 29(4): 580-584. |
[7] | WANG Ping, YANG Yintang, LIU Zengji, SHANG Tao, Guo Lixin. Evaluation of DC I-V Characteristics and Small Signal Parameters of 4H-SiC Metal-Semiconductor Field Effect Transistors [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 28(1): 145-151. |
[8] | SHENG Xiaowei, LUO Zhiyuan, CAI Qingdong. Numerical Study on Friction Between Solid Body and Granular Material [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 26(3): 403-408. |
[9] | CHEN Wen-jian, XIE Jia-chun, XU Jun, HU Lin-hui, DONG Xiao-bo. The Coarse Dispersion of SiC/SiO2 Fractal Interface [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 21(4): 311-315. |
[10] | YANG Lin-an, ZHANG Yi-men, YU Chun-li, YANG Yong-min, ZHANG Yu-ming. Surface-state Effects on Silicon Carbide Power MESFET's [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 20(5): 418-422. |
[11] | MAN Zhen-yong, FENG Xi-qi. COMPUTER SIMULATIONS OF THE INTERACTIONS BETWEEN C20 AND A RECONSTRUCTED SILICON (100)-(2×1) SURFACE [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 17(S1): 65-70. |
[12] | Min Xinmin, Deng Zhiping, Zhao Xiujian. STRUCTURES, PROPERTIES AND QUANTUM CHEMISTRY CALCULATING OF SILICON OXYNITRIDE AND OXIDE GLASSES [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 14(2): 242-246. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.