Chinese Journal of Computational Physics ›› 2021, Vol. 38 ›› Issue (3): 371-378.DOI: 10.19596/j.cnki.1001-246x.8253
• Research Reports • Previous Articles
Jing PAN1(), Guohua SHEN2
Received:
2020-07-20
Online:
2021-05-25
Published:
2021-09-30
CLC Number:
Jing PAN, Guohua SHEN. Enhanced Photocatalytic Activity of ZnO for Water-splitting with Isovalent Anion-Cation Codoping: First-principles Calculations[J]. Chinese Journal of Computational Physics, 2021, 38(3): 371-378.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8253
System | bond length | lattice | dipole | PBE-Eg | HSE-Eg | BGC | VBM | CBM | ||||
Zn-O | Cd-O | Zn-S/Te/Se | a | c | ||||||||
ZnO | 0.200 | 0.326 | 0.524 | 2.822 | 0.8 | 3.37 | -5.52 | -7.20 | -3.83 | |||
Cd | 0.199 | 0.217 | 0.328 | 0.528 | 3.356 | 1.31 | 3.09 | |||||
S | 0.200 | 0.223 | 0.329 | 0.531 | 1.502 | 1.78 | 3.34 | |||||
Se | 0.200 | 0.232 | 0.330 | 0.534 | 1.175 | 1.68 | 3.18 | |||||
Te | 0.201 | 0.245 | 0.332 | 0.537 | 0.514 | 1.49 | 2.81 | |||||
(Cd+S) | 0.200 | 0.217 | 0.222 | 0.330 | 0.534 | 1.916 | 1.76 | 2.79 | -5.34 | -6.74 | -3.95 | |
(Cd+Se) | 0.200 | 0.217 | 0.232 | 0.330 | 0.536 | 2.612 | 1.40 | 2.62 | -5.10 | -6.50 | -3.88 | |
(Cd+Te) | 0.201 | 0.219 | 0.246 | 0.332 | 0.538 | 2.621 | 1.95 | 2.18 | -4.84 | -5.93 | -3.75 |
System | bond length | lattice | dipole | PBE-Eg | HSE-Eg | BGC | VBM | CBM | ||||
Zn-O | Cd-O | Zn-S/Te/Se | a | c | ||||||||
ZnO | 0.200 | 0.326 | 0.524 | 2.822 | 0.8 | 3.37 | -5.52 | -7.20 | -3.83 | |||
Cd | 0.199 | 0.217 | 0.328 | 0.528 | 3.356 | 1.31 | 3.09 | |||||
S | 0.200 | 0.223 | 0.329 | 0.531 | 1.502 | 1.78 | 3.34 | |||||
Se | 0.200 | 0.232 | 0.330 | 0.534 | 1.175 | 1.68 | 3.18 | |||||
Te | 0.201 | 0.245 | 0.332 | 0.537 | 0.514 | 1.49 | 2.81 | |||||
(Cd+S) | 0.200 | 0.217 | 0.222 | 0.330 | 0.534 | 1.916 | 1.76 | 2.79 | -5.34 | -6.74 | -3.95 | |
(Cd+Se) | 0.200 | 0.217 | 0.232 | 0.330 | 0.536 | 2.612 | 1.40 | 2.62 | -5.10 | -6.50 | -3.88 | |
(Cd+Te) | 0.201 | 0.219 | 0.246 | 0.332 | 0.538 | 2.621 | 1.95 | 2.18 | -4.84 | -5.93 | -3.75 |
1 |
FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238, 37- 38.
DOI |
2 |
GRAZEL M. Photoelectrochemical cells[J]. Nature, 2001, 414, 338- 344.
DOI |
3 | KUBACKA A, FERNANDEZ-GARCIA M, COLON G. Advanced nanoarchitectures for solar photocatalytic applications[J]. Chem Rev, 2012, 112, 1555- 1614. |
4 |
SU T, SHAO Q, QIN Z, et al. Role of interfaces in two-dimensional photocatalyst for water splitting[J]. ACS Catalysis, 2018, 8 (3): 2253- 2276.
DOI |
5 |
ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293, 269- 271.
DOI |
6 |
YIN W J, TANG H, WEI S H, et al. Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: The case of TiO2[J]. Phys Rev B, 2010, 82, 045106.
DOI |
7 |
QIU Y, YAN K, DENG H, et al. Secondary branching and nitrogen doping of ZnO nanotetrapods: Building a highly active network for photoelectrochemical water-splitting[J]. Nano Lett, 2012, 12, 407- 413.
DOI |
8 |
THOMAS M A, CUI J B. Electrochemical route to p-type doping of ZnO nanowires[J]. J Phys Chem Lett, 2010, 1, 1090- 1094.
DOI |
9 |
YANG X, WOLCOTT A, WANG G, et al. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting[J]. Nano Lett, 2009, 9, 2331- 2336.
DOI |
10 |
POORNAPRAKASH B, CHALAPATHI U, KUMAR M, et al. Enhanced photocatalytic degradation and hydrogen evolution of ZnS nanoparticles by (Co, Er) co-doping[J]. Matter Lett, 2020, 273, 127887.
DOI |
11 |
WEI S H. Overcoming the doping bottleneck in semiconductors[J]. Comput Mater Sc, 2004, 30, 337- 348.
DOI |
12 |
AHN K S, YAN Y, AL-JASSIM M. Band gap narrowing of ZnO: N films by varing rf sputtering power in O2/N2 mixtures[J]. J Vac Sci Technol B, 2007, 25, L23.
DOI |
13 |
JOUNG Y, LEE K, PARK M, et al. Electrical and optical properties of Al-doped ZnO transparent conductive oxide films prepared via radio frequency magnetron Co-sputtering system[J]. Journal of Nanoscience and Nanotechnology, 2020, 20 (11): 6788- 6791.
DOI |
14 |
JAKANI M, COMPET G, CLAVERIE J, et al. Photoelectrochemical properties of zinc oxide doped with 3d elements[J]. J Solid State Chem, 1985, 56, 269- 277.
DOI |
15 |
BAHADUR L, RAO T N. Photoelectrochemical studies of cobalt-doped ZnO sprayer thin film semiconductor electrodes in acetonitrile medium[J]. Sol Energy Mater Sol Cells, 1992, 27, 347- 360.
DOI |
16 |
ZHU W, QIU X, IANCU V, et al. Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity[J]. Phys Rev Lett, 2009, 103, 226401.
DOI |
17 | GAI Y, LI J, LI S S, et al. Design of narrow-gap TiO2: A passivated codoping approach for enhanced photoelectrochemical activity[J]. Phys Rev Lett, 2009, 102, 0364021. |
18 |
PAN J, WANG S D, CHEN Q, et al. Band structure engineering of ZnO by anion-cation codoping for enhanced photoelectrochemical activity[J]. Chem Phys Chem, 2014, 15, 1611- 1618.
DOI |
19 |
MAYER M A, YU K M, SPEAKS D T, et al. Band gap engineering of oxide photoelectrodes: Characterization of ZnO1-xSex[J]. J Phys Chem C, 2012, 116, 15281- 15289.
DOI |
20 |
LAI H H C, KUZNETSOV V L, EGDELL R G, et al. Electronic structure of ternary CdxZn1-xO (0 ≤ x ≤ 0.075) alloys[J]. Appl Phys Lett, 2012, 100, 072106.
DOI |
21 | CHEN H X, DU S J, ZHUANG G C. Structure and magnetic properties of Ni-doped ZnO clusters[J]. Chinese J Comput Phys, 2018, 35 (1): 112- 118. |
22 | CHEN C T, CONG S, CHEN H F, et al. First-principles study of electronic structure and optical properties of Bi doped ZnO[J]. Chinese J Comput Phys, 2018, 35 (6): 720- 728. |
23 | LI L L, LI W X, DAI J F, et al. Effects of Zinc vacancies on electronic structure of Al-P co-doped ZnO: First-principles calculations[J]. Chinese J Comput Phys, 2017, 34 (6): 714- 721. |
24 | XIE J M, CHEN H X. Structure and magnetic properties of Co-doped (ZnO)12 clusters[J]. Chinese J Comput Phys, 2014, 31 (3): 372- 378. |
25 |
KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B, 1996, 54, 11169.
DOI |
26 |
VENKATESAN M, FITZGERALD C B, LUNNEY J G, et al. Anisotropic ferromagnetism in substituted zinc oxide[J]. Phys Rev Lett, 2004, 93, 177206.
DOI |
27 |
LI L, CUI X Y, OHTANI K, et al. Magnetism of co-doped ZnO epitaxially grown on a ZnO substrate[J]. Phys Rev B, 2012, 85, 174430.
DOI |
28 |
PERDEWJ P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77, 3865.
DOI |
29 |
OBA F, TOGO A, TANAKA I. Defect energetics in ZnO: A hybrid Hartree-Fock density functional study[J]. Phys Rev B, 2008, 77, 245202.
DOI |
30 |
HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened Coulomb potential[J]. J Chem Phys, 2006, 124, 219906.
DOI |
31 |
SATO J, KOBAYASHI H, INOUE Y. Photocatalytic activity for water decomposition of indates with octahedrally coordinated d 10 configuration II. Roles of geometric and electronic structures[J]. J Phys Chem B, 2003, 107, 7970- 7975.
DOI |
32 |
REYNOLDS D C, LOOK D C, JOGAI B, et al. Valence-band ordering in ZnO[J]. Phys Rev B, 1999, 60, 2340.
DOI |
33 |
HUTCHINSON D A W. Self-consistent effects of continuous wave output coupling of atoms from a Bose-Einstein condensate[J]. Phys Rev Lett, 1999, 82, 6.
DOI |
34 |
KANAN D K, CARTER E A. Band gap engineering of MnO via ZnO alloying: A potential new visible-light photocatalyst[J]. J Phys Chem C, 2012, 116, 9876- 9887.
DOI |
35 |
AKYOL A, YATMAZ H C, BAYRAMOGLU M. Photocatalytic decolorization of remazol red RR in aqueous ZnO suspensions[J]. Appl Cata B: Environ, 2004, 54, 19- 24.
DOI |
[1] | XIONG Zonggang, DU Juan, ZHANG Xianzhou. Acceptor and Donor Impurity States in Group V and VII Atom-doped Two-dimensional GeSe Monolayer [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(6): 733-741. |
[2] | CHEN Chuntian, CONG Shan, CHEN Hongfei, WANG Lei, LI Kai. First-Principles Study of Electronic Structure and Optical Properties of Bi Doped ZnO [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(6): 720-728. |
[3] | LI Yong, LI Haisheng, LI Guanya, WANG Zhaowu, LI Guoling, ZUO Zhengwei, LI Liben. Alloy Effects Strengthen Adsorption of H2O on PtRun Clusters [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(2): 230-236. |
[4] | ZHANG Ruoxing, HOU Shimin, CHOU Qiang. Parallel Computing of First-principles Based Quantum Transport Simulations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 32(6): 631-638. |
[5] | WANG Guangtao, ZHANG Lin, ZHANG Huiping, LIU Chang. Electronic Structure and Magnetism of BaTi_2Bi_2O [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 32(1): 107-114. |
[6] | CHEN Jinfan, LUO Chao, AO Bingyun, PENG Lixia, SHI Jie. Computational and Experimental Study on Mechanical Behavior of V-Ta Alloys [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 31(5): 609-616. |
[7] | FENG Cuiju, MI Binzhou. Theoretical Study of Nickel Doping in Copper Clusters [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 30(6): 921-930. |
[8] | ZHANG Fangying. First-principles Study of Structural Transformation of ZnO Under Low Pressures [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 29(2): 303-307. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.