Chinese Journal of Computational Physics ›› 2021, Vol. 38 ›› Issue (4): 381-392.DOI: 10.19596/j.cnki.1001-246x.8282
• Research Reports • Previous Articles Next Articles
Kaibo ZHU1,2, Longfei XU2,*(), Liujun PAN2, Huayun SHEN2
Received:
2020-10-10
Online:
2021-07-25
Published:
2021-12-21
Contact:
Longfei XU
CLC Number:
Kaibo ZHU, Longfei XU, Liujun PAN, Huayun SHEN. Application of JFNK Method in SN Transport Calculations[J]. Chinese Journal of Computational Physics, 2021, 38(4): 381-392.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8282
区域 | Σt | ΣS | Q |
(I) | 1.0 | 1.0 | 1.0 |
(II) | 0.001 | 0.0 | 0.0 |
(III) | 100.0 | 0.0 | 0.0 |
(IV) | 10.0 | 9.999 | 0.0 |
Table 1 Material properties for the 2D shielding problem
区域 | Σt | ΣS | Q |
(I) | 1.0 | 1.0 | 1.0 |
(II) | 0.001 | 0.0 | 0.0 |
(III) | 100.0 | 0.0 | 0.0 |
(IV) | 10.0 | 9.999 | 0.0 |
方法 | 误差 | 迭代次数 | 扫描次数 | 时间/s |
SI | 9.30×10-6 | 160 | 160 | 10.395 |
GMRES | 5.39×10-6 | 14 | 18 | 1.207 |
JFNK | 6.28×10-6 | (17) | 22 | 1.404 |
Table 2 Comparison of SI, GMRES and JFNK without flux fixup
方法 | 误差 | 迭代次数 | 扫描次数 | 时间/s |
SI | 9.30×10-6 | 160 | 160 | 10.395 |
GMRES | 5.39×10-6 | 14 | 18 | 1.207 |
JFNK | 6.28×10-6 | (17) | 22 | 1.404 |
方法 | 误差 | 迭代次数 | 扫描次数 | 时间/s |
SI | 9.60×10-6 | 158 | 158 | 12.744 |
JFNK(η1) | 6.43×10-7 | (6,8,15,16) | 55 | 4.665 |
JFNK(η2) | 6.23×10-8 | (16,19,18) | 61 | 5.094 |
Table 3 Comparison of SI and JFNK with flux fixup
方法 | 误差 | 迭代次数 | 扫描次数 | 时间/s |
SI | 9.60×10-6 | 158 | 158 | 12.744 |
JFNK(η1) | 6.43×10-7 | (6,8,15,16) | 55 | 4.665 |
JFNK(η2) | 6.23×10-8 | (16,19,18) | 61 | 5.094 |
材料区域 | Σt(x) | Σs(x) | νΣf(x) |
0≤x≤5 | 1 | 0.99 | 0.020 762 057 5 |
5≤x≤10 | 1 | Σsr | 0.0 |
Table 4 Material cross sections in 1D benchmark problem
材料区域 | Σt(x) | Σs(x) | νΣf(x) |
0≤x≤5 | 1 | 0.99 | 0.020 762 057 5 |
5≤x≤10 | 1 | Σsr | 0.0 |
c=Σs/Σt | 参考k | 方法 | 收敛误差 | 迭代次数 | 扫描次数 | k | |
Outer | Inner | ||||||
PI-SI | 4.32×10-7 | 7 | 1 659 | 0.999 52 | |||
0.99 | 1.000 000 | PI-GMRES | 4.47×10-7 | 7 | 147 | 0.999 53 | |
JFNK | 1.22×10-8 | 2 | 38 | 42 | 0.999 53 | ||
PI-SI | 2.09×10-7 | 8 | 1 394 | 0.748 00 | |||
0.90 | 0.748 862 | PI-GMRES | 2.59×10-7 | 8 | 145 | 0.748 01 | |
JFNK | 8.01×10-11 | 3 | 52 | 57 | 0.748 01 | ||
PI-SI | 3.20×10-7 | 8 | 1 325 | 0.683 84 | |||
0.80 | 0.684 913 | PI-GMRES | 3.58×10-7 | 8 | 144 | 0.683 85 | |
JFNK | 4.31×10-10 | 3 | 51 | 60 | 0.683 85 | ||
PI-SI | 4.35×10-7 | 8 | 1 293 | 0.654 02 | |||
0.70 | 0.655 223 | PI-GMRES | 4.07×10-7 | 8 | 129 | 0.654 03 | |
JFNK | 6.79×10-10 | 3 | 47 | 55 | 0.654 03 | ||
PI-SI | 4.47×10-7 | 8 | 1 271 | 0.636 05 | |||
0.60 | 0.637 351 | PI-GMRES | 4.35×10-7 | 8 | 128 | 0.636 06 | |
JFNK | 1.56×10-9 | 3 | 52 | 44 | 0.636 06 | ||
PI-SI | 4.47×10-7 | 8 | 1 258 | 0.623 76 | |||
0.50 | 0.625 151 | PI-GMRES | 4.54×10-7 | 8 | 128 | 0.623 77 | |
JFNK | 7.72×10-10 | 3 | 42 | 47 | 0.623 77 | ||
PI-SI | 4.44×10-7 | 8 | 1 247 | 0.614 71 | |||
0.40 | 0.616 174 | PI-GMRES | 4.66×10-7 | 8 | 120 | 0.614 72 | |
JFNK | 1.74×10-9 | 3 | 42 | 47 | 0.614 72 | ||
PI-SI | 4.44×10-7 | 8 | 1 239 | 0.607 71 | |||
0.30 | 0.609 232 | PI-GMRES | 4.75×10-7 | 8 | 120 | 0.607 71 | |
JFNK | 2.11×10-9 | 3 | 42 | 47 | 0.607 71 | ||
PI-SI | 4.50×10-7 | 8 | 1 233 | 0.602 08 | |||
0.20 | 0.603 669 | PI-GMRES | 4.82×10-7 | 8 | 120 | 0.602 09 | |
JFNK | 3.08×10-9 | 3 | 40 | 45 | 0.602 09 | ||
PI-SI | 4.53×10-7 | 8 | 1 226 | 0.597 45 | |||
0.10 | 0.599 089 | PI-GMRES | 4.87×10-7 | 8 | 120 | 0.597 45 | |
JFNK | 3.31×10-9 | 3 | 40 | 45 | 0.59745 | ||
PI-SI | 4.56×10-7 | 8 | 1 222 | 0.593 90 | |||
0.01 | 0.595 597 | PI-GMRES | 4.91×10-7 | 8 | 120 | 0.593 91 | |
JFNK | 3.57×10-9 | 3 | 40 | 45 | 0.593 91 |
Table 5 Numerical results of one-dimensional problem with different c
c=Σs/Σt | 参考k | 方法 | 收敛误差 | 迭代次数 | 扫描次数 | k | |
Outer | Inner | ||||||
PI-SI | 4.32×10-7 | 7 | 1 659 | 0.999 52 | |||
0.99 | 1.000 000 | PI-GMRES | 4.47×10-7 | 7 | 147 | 0.999 53 | |
JFNK | 1.22×10-8 | 2 | 38 | 42 | 0.999 53 | ||
PI-SI | 2.09×10-7 | 8 | 1 394 | 0.748 00 | |||
0.90 | 0.748 862 | PI-GMRES | 2.59×10-7 | 8 | 145 | 0.748 01 | |
JFNK | 8.01×10-11 | 3 | 52 | 57 | 0.748 01 | ||
PI-SI | 3.20×10-7 | 8 | 1 325 | 0.683 84 | |||
0.80 | 0.684 913 | PI-GMRES | 3.58×10-7 | 8 | 144 | 0.683 85 | |
JFNK | 4.31×10-10 | 3 | 51 | 60 | 0.683 85 | ||
PI-SI | 4.35×10-7 | 8 | 1 293 | 0.654 02 | |||
0.70 | 0.655 223 | PI-GMRES | 4.07×10-7 | 8 | 129 | 0.654 03 | |
JFNK | 6.79×10-10 | 3 | 47 | 55 | 0.654 03 | ||
PI-SI | 4.47×10-7 | 8 | 1 271 | 0.636 05 | |||
0.60 | 0.637 351 | PI-GMRES | 4.35×10-7 | 8 | 128 | 0.636 06 | |
JFNK | 1.56×10-9 | 3 | 52 | 44 | 0.636 06 | ||
PI-SI | 4.47×10-7 | 8 | 1 258 | 0.623 76 | |||
0.50 | 0.625 151 | PI-GMRES | 4.54×10-7 | 8 | 128 | 0.623 77 | |
JFNK | 7.72×10-10 | 3 | 42 | 47 | 0.623 77 | ||
PI-SI | 4.44×10-7 | 8 | 1 247 | 0.614 71 | |||
0.40 | 0.616 174 | PI-GMRES | 4.66×10-7 | 8 | 120 | 0.614 72 | |
JFNK | 1.74×10-9 | 3 | 42 | 47 | 0.614 72 | ||
PI-SI | 4.44×10-7 | 8 | 1 239 | 0.607 71 | |||
0.30 | 0.609 232 | PI-GMRES | 4.75×10-7 | 8 | 120 | 0.607 71 | |
JFNK | 2.11×10-9 | 3 | 42 | 47 | 0.607 71 | ||
PI-SI | 4.50×10-7 | 8 | 1 233 | 0.602 08 | |||
0.20 | 0.603 669 | PI-GMRES | 4.82×10-7 | 8 | 120 | 0.602 09 | |
JFNK | 3.08×10-9 | 3 | 40 | 45 | 0.602 09 | ||
PI-SI | 4.53×10-7 | 8 | 1 226 | 0.597 45 | |||
0.10 | 0.599 089 | PI-GMRES | 4.87×10-7 | 8 | 120 | 0.597 45 | |
JFNK | 3.31×10-9 | 3 | 40 | 45 | 0.59745 | ||
PI-SI | 4.56×10-7 | 8 | 1 222 | 0.593 90 | |||
0.01 | 0.595 597 | PI-GMRES | 4.91×10-7 | 8 | 120 | 0.593 91 | |
JFNK | 3.57×10-9 | 3 | 40 | 45 | 0.593 91 |
材料 | Σt/cm-1 | νΣf/cm-1 | ΣS/cm-1 | |
情况1 | 1区 | 1.0 | 1.0 | 0.5 |
2区 | 0.8 | 0.0 | 0.4 | |
情况2 | 1区 | 1.0 | 0.1 | 0.99 |
2区 | 0.8 | 0.0 | 0.79 | |
情况3 | 1区 | 1.0 | 0.1 | 0.999 |
2区 | 0.8 | 0.1 | 0.799 |
Table 6 Material cross sections in the Issa benchmark problem
材料 | Σt/cm-1 | νΣf/cm-1 | ΣS/cm-1 | |
情况1 | 1区 | 1.0 | 1.0 | 0.5 |
2区 | 0.8 | 0.0 | 0.4 | |
情况2 | 1区 | 1.0 | 0.1 | 0.99 |
2区 | 0.8 | 0.0 | 0.79 | |
情况3 | 1区 | 1.0 | 0.1 | 0.999 |
2区 | 0.8 | 0.1 | 0.799 |
Jacobian类型 | Newton迭代 | GMRES迭代 | 扫描计数 | k | ‖F‖ | |
情况1 | N-NK | 7 | (4, 4, 5, 6, 11, 14, 25a) | 107 | 1.677 66 | 4.344×10-9 |
N-JFNK | 7 | (4, 4, 5, 6, 11, 14, 25a) | 107 | 1.677 66 | 4.341×10-9 | |
FR-JFNK | 4 | (10, 8, 13, 21) | 75 | 1.677 66 | 5.099×10-8 | |
情况2 | N-NK | 8 | (4, 7, 11, 8, 12, 16, 25a, 25a) | 152 | 1.773 66 | 1.030×10-7 |
N-JFNK | 8 | (4, 7, 11, 8, 12, 16, 25a, 25a) | 152 | 1.773 66 | 1.040×10-7 | |
FR-JFNK | 4 | (18, 25a, 25a, 25a) | 118 | 1.773 66 | 4.501×10-8 | |
情况3 | N-NK | 8 | (4, 7, 12, 8, 12, 18, 25a, 25a) | 155 | 2.273 59 | 3.990×10-8 |
N-JFNK | 8 | (4, 7, 12, 8, 12, 18, 25a, 25a) | 155 | 2.273 59 | 3.998×10-8 | |
FR-JFNK | 4 | (20, 25a, 25a, 25a) | 120 | 2.273 59 | 3.599×10-7 |
Table 7 Numerical results of Issa benchmark problem in the case of different Jacobian types
Jacobian类型 | Newton迭代 | GMRES迭代 | 扫描计数 | k | ‖F‖ | |
情况1 | N-NK | 7 | (4, 4, 5, 6, 11, 14, 25a) | 107 | 1.677 66 | 4.344×10-9 |
N-JFNK | 7 | (4, 4, 5, 6, 11, 14, 25a) | 107 | 1.677 66 | 4.341×10-9 | |
FR-JFNK | 4 | (10, 8, 13, 21) | 75 | 1.677 66 | 5.099×10-8 | |
情况2 | N-NK | 8 | (4, 7, 11, 8, 12, 16, 25a, 25a) | 152 | 1.773 66 | 1.030×10-7 |
N-JFNK | 8 | (4, 7, 11, 8, 12, 16, 25a, 25a) | 152 | 1.773 66 | 1.040×10-7 | |
FR-JFNK | 4 | (18, 25a, 25a, 25a) | 118 | 1.773 66 | 4.501×10-8 | |
情况3 | N-NK | 8 | (4, 7, 12, 8, 12, 18, 25a, 25a) | 155 | 2.273 59 | 3.990×10-8 |
N-JFNK | 8 | (4, 7, 12, 8, 12, 18, 25a, 25a) | 155 | 2.273 59 | 3.998×10-8 | |
FR-JFNK | 4 | (20, 25a, 25a, 25a) | 120 | 2.273 59 | 3.599×10-7 |
Restarts | Newton Iteration | GMRES Iteration | Sweeps | k | |
GMRES(25) | 1 | 12 | (16, 25a×11) | 682 | 1.025 61 |
2 | 6 | (16, 50a×5) | 594 | 1.025 61 | |
3 | 5 | (16, 75a×4) | 692 | 1.025 61 | |
4 | 5 | (16, 100a×4) | 900 | 1.025 61 | |
5 | 4 | (16, 125a×3) | 842 | 1.025 61 | |
LGMRES | 1 | 6 | (16, 25a×5) | 402 | 1.025 61 |
Table 8 Numerical results in the case of two GMRES variants
Restarts | Newton Iteration | GMRES Iteration | Sweeps | k | |
GMRES(25) | 1 | 12 | (16, 25a×11) | 682 | 1.025 61 |
2 | 6 | (16, 50a×5) | 594 | 1.025 61 | |
3 | 5 | (16, 75a×4) | 692 | 1.025 61 | |
4 | 5 | (16, 100a×4) | 900 | 1.025 61 | |
5 | 4 | (16, 125a×3) | 842 | 1.025 61 | |
LGMRES | 1 | 6 | (16, 25a×5) | 402 | 1.025 61 |
1 | 谢仲生, 邓力. 中子输运理论数值计算方法[M]. 西安: 西北工业大学出版社, 2005. |
2 | 杜书华. 输运问题的计算机模拟[M]. 湖南: 湖南科技出版社, 1988. |
3 |
WARSA J S, WAREING T A, MOREL J E, et al. Krylov subspace iterations for deterministic k-igenvalue calculations[J]. Nuclear Science and Engineering, 2004, 147 (1): 26- 42.
DOI |
4 |
KNOLL D A, KEYES D E. Jacobian-free Newton-Krylov methods: A survey of approaches and applications[J]. Journal of Computational Physics, 2004, 193 (2): 357- 397.
DOI |
5 | KNOLL D A, PARK H, SMITH K S. Application of the Jacobian-free Newton-Krylov method in computational reactor physics[C]//American Nuclear Society. International Conference on Mathematics, Computational Methods and Reactor Physics, 2009, 3: 1560-70. |
6 | WALKERS E D, COLLINS B, GEHIN J C. Low-order multiphysics coupling techniques for nuclear reactor applications[J]. Annals of Nuclear Energy, 2019, 132 (OCT.): 327- 338. |
7 |
GILL D F, AZMY Y. Newton's method for solving k-eigenvalue problems in neutron diffusion theory[J]. Nuclear Science and Engineering, 2011, 167 (2): 141- 153.
DOI |
8 |
GILL D F, AZMY Y Y, WARSA J S, et al. Newton ' s method for the computation of k-eigenvalues in SN transport applications[J]. Nuclear Science and Engineering the Journal of the American Nuclear Society, 2011, 168 (1): 37- 58.
DOI |
9 | XU X W, MO Z Y, AN H B. Algebraic two-level iterative method for 2-D 3-T radiation diffusion equations[J]. Chinese Journal of Computational Physics, 2009, 26 (1): 1- 8. |
10 | AN H B, MO Z Y. Iteration process of JFNK method and physical constraints[J]. Chinese Journal of Computational Physics, 2012, 29 (5): 654- 660. |
11 | FENG T, YU X J, AN H B, et al. Preconditioned Jacobian-free Newton-Krylov methods for nonequilibrium radiation diffusion equations[J]. Chinese Journal of Computational Physics, 2013, 30 (4): 483- 490. |
12 | 徐树方, 钱江. 矩阵计算六讲[M]. 北京: 高等教育出版社, 2011. |
13 |
BAKER A H, JESSUP E R, MANTEUFFEL T A. A Technique for accelerating the convergence of restarted GMRES[J]. SIAM Journal on Matrix Analysis and Applications, 2005, 26, 962.
DOI |
14 | JONES E, OLIPHANT E, PETERSON P, et al. SciPy: Open source scientific tools for Python[EB/OL]. http://www.scipy.org/. |
15 | 肖锋, 卢浩亮, 吴宏春. Krylov子空间方法在输运计算中的应用研究[C]. 哈尔滨: 反应堆数值计算和粒子输运学术会议暨反应堆物理会议, 2006: 1-6. |
16 |
HÉBERT A. Application of the Hermite method for finite element reactor calculations[J]. Nuclear Science and Engineering, 1985, 91 (1): 34- 58.
DOI |
[1] | LIU Cong, ZHANG Bin, ZHANG Liang, ZHENG Junxiao, CHEN Yixue. Application of SN Adjoint Function on Automated Variance Reduction for Monte Carlo Particle Transport Calculation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(5): 535-544. |
[2] | ZHENG Zheng, WANG Mengqi, LI Hui, MEI Qiliang. 3D Discrete Ordinates-Monte Carlo Coupling Method for Nuclear Power Plant Cavity Streaming Calculation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 33(5): 599-605. |
[3] | HANG Xudeng, HONG Zhenying, LI Shuanggui, YUAN Guangwei. Deterministic Numerical Methods for Particle Transport Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 31(2): 127-154. |
[4] | AN Hengbin, MO Zeyao. Iteration Process of JFNK Method and Physical Constraints [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 29(5): 654-660. |
[5] | DU Jin-feng. Computation of α Eigenvalue on Neutron Transport Equation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 20(6): 509-513. |
[6] | Liu Linhua, Tan Heping, Yu Qizheng. Inverse problem of boundary incident radiation heat flux in semitransparent planar slab [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 16(3): 235-242. |
[7] | Li Benwen, Wei Xiaolin. SRAPN ANGULAR QUADRATURE SET FOR DISCRETE ORDI NATES METHOD AND ITS COMPARISON WITH TN SET [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 15(6): 735-741. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.