Chinese Journal of Computational Physics ›› 2021, Vol. 38 ›› Issue (5): 543-554.DOI: 10.19596/j.cnki.1001-246x.8330
Special Issue: 多孔介质毛细动力学研究
• Special Topics on Capillary Dynamics in Porous Media • Previous Articles Next Articles
Jiangtao ZHENG1(), Ninghong JIA2, Huifang HU3, Yong YANG3, Yang JU1, Moran WANG4,*(
)
Received:
2021-01-15
Online:
2021-09-25
Published:
2022-03-24
Contact:
Moran WANG
CLC Number:
Jiangtao ZHENG, Ninghong JIA, Huifang HU, Yong YANG, Yang JU, Moran WANG. Study on Liquid-Liquid Spontaneous Imbibition Dynamics in Bifurcated Channels[J]. Chinese Journal of Computational Physics, 2021, 38(5): 543-554.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8330
G | τk | τ | ρk | ρ${\rm{\bar k}}$ | β |
3.6 | 0.6 | 0.6 | 0.97 | 0.97 | -0.25 |
Table 1 Parameters used in the SC-LBM simulation
G | τk | τ | ρk | ρ${\rm{\bar k}}$ | β |
3.6 | 0.6 | 0.6 | 0.97 | 0.97 | -0.25 |
G | τk | τ${\rm{\bar k}}$ | ρk | ρ${\rm{\bar k}}$ | β |
3.6 | 0.8 | 30.5, 3.5, 0.8, 0.53, 0.503 | 0.97 | 0.97 | -0.25 |
Table 2 Parameters used in the SC-LBM simulation of different viscosity ratio cases
G | τk | τ${\rm{\bar k}}$ | ρk | ρ${\rm{\bar k}}$ | β |
3.6 | 0.8 | 30.5, 3.5, 0.8, 0.53, 0.503 | 0.97 | 0.97 | -0.25 |
1 | 蔡建超, 郁伯铭. 多孔介质自发渗吸研究进展[J]. 力学进展, 2012, 42 (6): 735- 754. |
2 |
SINGH K, JUNG M, BRINKMANN M, et al. Capillary-dominated fluid displacement in porous media[J]. Annual Review of Fluid Mechanics, 2019, 51 (1): 429- 449.
DOI |
3 |
CHEN H, ZHANG P, ZHANG L, et al. Continuous directional water transport on the peristome surface of nepenthes alata[J]. Nature, 2016, 532 (7597): 85- 89.
DOI |
4 | YANG R, GUO X, YI J, et al. Spontaneous imbibition of three leading shale formations in the middle Yangtze platform, south China[J]. Energy & Fuels, 2017, 31 (7): 6903- 6916. |
5 |
WASHBURN E W. The dynamics of capillary flow[J]. Physical Review, 1921, 17 (3): 273- 283.
DOI |
6 |
O'LOUGHLIN M, WILK K, PRIEST C, et al. Capillary rise dynamics of aqueous glycerol solutions in glass capillaries: A critical examination of the Washburn equation[J]. J Colloid Interface Sci, 2013, 411, 257- 64.
DOI |
7 | HAMRAOUI A, THURESSON K, NYLANDER T, et al. Can a dynamic contact angle be understood in terms of a friction coefficient?[J]. Journal of Colloid & Interface Science, 2000, 226 (2): 199- 204. |
8 | REYSSAT M, COURBIN L, REYSSAT E, et al. Imbibition in geometries with axial variations[J]. Journal of Fluid Mechanics, 2008, 615 (9): 335- 344. |
9 |
HANDY L. Determination of effective capillary pressures for porous media from imbibition data[J]. Trans AIME, 1960, 219, 75- 80.
DOI |
10 |
LI K, HORNE R N. Characterization of spontaneous water imbibition into gas-saturated rocks[J]. Spe Journal, 2001, 6 (4): 375- 384.
DOI |
11 |
CAI J, YU B. A discussion of the effect of tortuosity on the capillary imbibition in porous media[J]. Transport in Porous Media, 2011, 89 (2): 251- 263.
DOI |
12 |
ZHAO B, MACMINN CW, JUANES R. Wettability control on multiphase flow in patterned microfluidics[J]. Proc Natl Acad Sci U S A, 2016, 113 (37): 10251- 6.
DOI |
13 | LENORMAND R, TOUBOUL E, ZARCONE C. Numerical models and experiments on immiscible displacements in porous media[J]. Journal of Fluid Mechanics, 2006, 189, 165- 187. |
14 | ZHENG J, CHEN Z, XIE C, et al. Characterization of spontaneous imbibition dynamics in irregular channels by mesoscopic modeling[J]. Computers & Fluids, 2018, 168, 21- 31. |
15 |
JU Y, GONG W, CHANG W, et al. Effects of pore characteristics on water-oil two-phase displacement in non-homogeneous pore structures: A pore-scale lattice Boltzmann model considering various fluid density ratios[J]. International Journal of Engineering Science, 2020, 154, 103343.
DOI |
16 |
JU Y, GONG W, ZHENG J. Characterization of immiscible phase displacement in heterogeneous pore structures: Parallel multicomponent lattice Boltzmann simulation and experimental validation using three-dimensional printing technology[J]. International Journal of Multiphase Flow, 2019, 114, 50- 65.
DOI |
17 | FENG Q, ZHAO Y, WANG S, et al. Pore-scale oil-water two-phase flow simulation based on phase field method[J]. Chinese Journal of Computational Physics, 2020, 37 (4): 439- 447. |
18 | SUN T, LIU Z, FAN W, et al. Three-dimensional numerical simulation of vapor bubble rising in superheated liquid by lattice Boltzmann method[J]. Chinese Journal of Computational Physics, 2019, 36 (6): 659- 664. |
19 | SUSSMAN M, FATEMI E, SMEREKA P, et al. An improved level set method for incompressible two-phase flows[J]. Computers & Fluids, 1998, 27 (5-6): 663- 680. |
20 |
BIRDSELL D T, RAJARAM H, LACKEY G. Imbibition of hydraulic fracturing fluids into partially saturated shale[J]. Water Resources Research, 2015, 51 (8): 6787- 6796.
DOI |
21 |
SEDGHI M, PIRI M, GOUAL L. Molecular dynamics of wetting layer formation and forced water invasion in angular nanopores with mixed wettability[J]. J Chem Phys, 2014, 141 (19): 194703.
DOI |
22 |
LI Z-Z, MIN T, KANG Q, et al. Investigation of methane adsorption and its effect on gas transport in shale matrix through microscale and mesoscale simulations[J]. International Journal of Heat and Mass Transfer, 2016, 98, 675- 686.
DOI |
23 |
ZHAO J, QIN F, DEROME D, et al. Improved pore network models to simulate single-phase flow in porous media by coupling with lattice Boltzmann method[J]. Advances in Water Resources, 2020, 145, 103738.
DOI |
24 |
GRUENER S, SADJADI Z, HERMES H E, et al. Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores[J]. Proc Natl Acad Sci U S A, 2012, 109 (26): 10245- 50.
DOI |
25 | ZENG W, CHEN S, GUO Z. Feasibility of simulation on flow in porous media with gas kinetic scheme[J]. Chinese Journal of Computational Physics, 2019, 36 (5): 551- 558. |
26 | XIE C, ZHANG J, WANG M. Lattice Boltzmann modeling of non-Newtonian multiphase fluid displacement[J]. Chinese Journal of Computational Physics, 2016, 33 (2): 147- 155. |
27 | XIE C, LEI W, BALHOFF M T, et al. Self-adaptive preferential flow control using displacing fluid with dispersed polymers in heterogeneous porous media[J]. Journal of Fluid Mechanics, 2020, 906, A10. |
28 |
AIDUN C K, CLAUSEN J R. Lattice-Boltzmann method for complex flows[J]. Annual Review of Fluid Mechanics, 2010, 42 (1): 439- 472.
DOI |
29 | SHAN X, CHEN H. Lattice Boltzmann model for simulating flows with multiple phases and components[J]. Phys Rev E: Stat Phys Plasmas Fluids Relat Interdiscip Topics, 1993, 47 (3): 1815- 1819. |
30 |
LI Q, LUO K H, KANG Q J, et al. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer[J]. Progress in Energy and Combustion Science, 2016, 52, 62- 105.
DOI |
31 | CHEN L, KANG Q, MU Y, et al. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications[J]. International Journal of Heat and Mass Transfer, 2014, 76 (6): 210- 236. |
32 | 郑江韬, 鞠杨, 王沫然. 孔隙结构基本单元内两相流体自吸渗规律研究[C]//中国力学大会-2017暨庆祝中国力学学会成立60周年大会论文集(B), 2017. |
33 | HUANG H, THORNE D T, SCHAAP M G, et al. Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models[J]. Phys Rev E: Stat Nonlin Soft Matter Phys, 2007, 76 (6 Pt 2): 066701. |
34 | PORTER M L, COON E T, KANG Q, et al. Multicomponent interparticle-potential lattice Boltzmann model for fluids with large viscosity ratios[J]. Phys Rev E: Stat Nonlin Soft Matter Phys, 2012, 86 (3 Pt 2): 036701. |
35 | COON E T, PORTER M L, KANG Q. Taxila lbm: A parallel, modular lattice Boltzmann framework for simulating pore-scale flow in porous media[J]. Computational Geosciences, 2013, 18 (1): 17- 27. |
36 | DE MAIO A, PALPACELLI S, SUCCI S. A new boundary condition for three-dimensional lattice Boltzmann simulations of capillary filling in rough micro-channels[J]. Communications in Computational Physics, 2015, 9 (5): 1284- 1292. |
37 |
ZHENG J, JU Y, WANG M. Pore-scale modeling of spontaneous imbibition behavior in a complex shale porous structure by pseudopotential lattice Boltzmann method[J]. Journal of Geophysical Research: Solid Earth, 2018, 123 (11): 9586- 9600.
DOI |
[1] | Shuting FENG, Houping DAI, Tongzheng SONG. Lattice Boltzmann Method for Two-dimensional Fractional Reaction-Diffusion Equations [J]. Chinese Journal of Computational Physics, 2022, 39(6): 666-676. |
[2] | Liubin ZHANG, Yanguang SHAN, Zhicheng RONG. Single Bubble Dynamics in Pool Boiling Under Uniform Electric Field: LBM Simulation [J]. Chinese Journal of Computational Physics, 2022, 39(5): 537-548. |
[3] | Jiaxin LIU, Lin ZHENG, Beihao ZHANG. Entropy Generation in Double-diffusive Natural Convection in a Square Porous Enclosure: Lattice Boltzmann Method [J]. Chinese Journal of Computational Physics, 2022, 39(5): 549-563. |
[4] | Pin-liang LIN, Huan-huan FENG, Yu-hong DONG. Analysis of Flow Field Around a Cylinder with Porous Media Layer [J]. Chinese Journal of Computational Physics, 2022, 39(4): 418-426. |
[5] | Qiao-ling ZHANG, He-fang JING. Flow Patterns in Three-dimensional Lid-driven Cavities with Curved Boundary: MRT-LBM Study [J]. Chinese Journal of Computational Physics, 2022, 39(4): 427-439. |
[6] | Lu CHEN, Ming GAO, Jia LIANG, Dongmin WANG, Yugang ZHAO, Lixin ZHANG. Droplet Upward Movement on an Inclined Surface Under Wetting Gradient: Lattice Boltzmann Simulation [J]. Chinese Journal of Computational Physics, 2021, 38(6): 672-682. |
[7] | Xuedan WEI, Houping DAI, Mengjun LI, Zhoushun ZHENG. Lattice Boltzmann Method for One-dimensional Riesz Spatial Fractional Convection-Diffusion Equations [J]. Chinese Journal of Computational Physics, 2021, 38(6): 683-692. |
[8] | Jianchao CAI. Some Key Issues and Thoughts on Spontaneous Imbibition in Porous Media [J]. Chinese Journal of Computational Physics, 2021, 38(5): 505-512. |
[9] | Zhenjie ZHANG, Jianyuan FENG, Jianchao CAI, Kangli CHEN, Qingbang MENG. Driving Force for Spontaneous Imbibition Under Different Boundary Conditions [J]. Chinese Journal of Computational Physics, 2021, 38(5): 513-520. |
[10] | Xiangxiang WEI, Qihong FENG, Xianmin ZHANG, Yingsong HUANG, Lijie LIU. Distribution of Remaining Oil in Water Flooding at Pore Scale: Volume of Fluid Method [J]. Chinese Journal of Computational Physics, 2021, 38(5): 573-584. |
[11] | Min WANG, Yuqing SHEN, Zhenyu CHEN, Peng XU. Reconstruction and Seepage Simulation of Random Porous Media with Monte Carlo Method [J]. Chinese Journal of Computational Physics, 2021, 38(5): 623-630. |
[12] | Qin LOU, Sheng TANG, Haoyuan WANG. Numerical Simulation of Bubble Dynamics in Porous Media with a Lattice Boltzmann Large Density Ratio Model [J]. Chinese Journal of Computational Physics, 2021, 38(3): 289-300. |
[13] | Jia LIANG, Ming GAO, Lu CHEN, Dongmin WANG, Lixin ZHANG. Lattice Boltzmann Study of a Droplet Impinging on a Stationary Droplet on a Fixed Wall Surface with Different Wettability [J]. Chinese Journal of Computational Physics, 2021, 38(3): 313-323. |
[14] | YUAN Junjie, YE Xin, SHAN Yanguang. Natural Convection in Triangular Cavity Filled with Nanofluid: Lattice Boltzmann Simulation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 38(1): 57-68. |
[15] | ZHAO Ming, WANG Ke, YU Duanmin. Ruelle-Takens Chaotic Natural Convection in a Horizontal Annulus with an Internally Slotted Circle [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(6): 667-676. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.