Chinese Journal of Computational Physics ›› 2021, Vol. 38 ›› Issue (5): 612-622.DOI: 10.19596/j.cnki.1001-246x.8308
Special Issue: 多孔介质毛细动力学研究
• Research Reports • Previous Articles Next Articles
Chao WANG1,2(), Fajie WANG1,2,*(
), Yan GU3, Xiao WANG3
Received:
2020-11-19
Online:
2021-09-25
Published:
2022-03-24
Contact:
Fajie WANG
CLC Number:
Chao WANG, Fajie WANG, Yan GU, Xiao WANG. Simulation Analysis of Electrostatic Field Based on Localized Method of Fundamental Solutions[J]. Chinese Journal of Computational Physics, 2021, 38(5): 612-622.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8308
s/% | MFS | LMFS | GFDM |
0 | 2.881×10-13 | 3.057×10-9 | 9.355×10-6 |
1 | 7.431×10-3 | 1.386×10-3 | 7.576×10-3 |
3 | 1.966×10-2 | 7.725×10-3 | 1.593×10-2 |
5 | 4.117×10-2 | 8.575×10-3 | 4.670×10-2 |
Table 1 Computational errors of MFS, LMFS and GFDM with distrubance
s/% | MFS | LMFS | GFDM |
0 | 2.881×10-13 | 3.057×10-9 | 9.355×10-6 |
1 | 7.431×10-3 | 1.386×10-3 | 7.576×10-3 |
3 | 1.966×10-2 | 7.725×10-3 | 1.593×10-2 |
5 | 4.117×10-2 | 8.575×10-3 | 4.670×10-2 |
坐标 | FEM | LMFS | LMFS偏差/10-3 | GFDM | GFDM偏差/10-2 |
(0.07, 0, 0) | 1.982 01 | 1.976 05 | 3.01 | 1.934 52 | 2.40 |
(0.2, 0, 0) | 3.871 22 | 3.863 86 | 1.90 | 3.769 14 | 2.64 |
(0.3, 0.1, 0) | 5.339 76 | 5.355 57 | 2.96 | 5.314 81 | 0.467 |
(0.4, 0.2, 0) | 7.359 71 | 7.389 45 | 4.04 | 7.885 56 | 7.14 |
(0.5, 0.2, 0) | 8.563 52 | 8.578 86 | 1.79 | 8.893 10 | 3.85 |
Table 2 Numerical results obtained with FEM, LMFS and GFDM
坐标 | FEM | LMFS | LMFS偏差/10-3 | GFDM | GFDM偏差/10-2 |
(0.07, 0, 0) | 1.982 01 | 1.976 05 | 3.01 | 1.934 52 | 2.40 |
(0.2, 0, 0) | 3.871 22 | 3.863 86 | 1.90 | 3.769 14 | 2.64 |
(0.3, 0.1, 0) | 5.339 76 | 5.355 57 | 2.96 | 5.314 81 | 0.467 |
(0.4, 0.2, 0) | 7.359 71 | 7.389 45 | 4.04 | 7.885 56 | 7.14 |
(0.5, 0.2, 0) | 8.563 52 | 8.578 86 | 1.79 | 8.893 10 | 3.85 |
1 | DAI Guoqiang, YU Zhenhong, GAO Lei, et al. Research on finite-difference time-domain method[J]. Modern Electronics Technique, 2013, 36 (1): 140- 143. |
2 | ZHAO Chengfang, LI Yuehui, ZHAN Hongxia. Combined iterative method based on COCG algorithm for solving electromagnetic FEM linear equations[J]. Semiconductor Optoelectronics, 2013, 34 (4): 595- 599. |
3 | ZHANG Yanjun, WANG Sijing, WANG Enzhi. Analysis of two-phase continuous porous media with FEM-EFGM coupled method[J]. Chinese Journal of Computational Physics, 2003, 20 (2): 142- 146. |
4 | ZHANG Huaiqing, WANG Yawei, FU Zhihong. Virtual boundary element method in computational electromagnetics[J]. Transactions of China Electrotechnical Society, 2013, 28 (2): 86- 90. |
5 | SUN Rui, HU Zongjun, NIU Zhongrong. Analysis of nearly singular integral problem in 3D acoustic field boundary element method[J]. Chinese Journal of Computational Physics, 2017, 34 (5): 611- 618. |
6 | YUAN Feng, DING Ning, LI Hao, et al. An electromagnetic field prediction method in the mountains based on 3D MoM and 2D FMM[J]. Journal of Microwaves, 2018, 34 (S1): 57- 59. |
7 | JIN Liang, QIU Yuntao, YANG Qingxin, et al. A parallel computing method to electromagnetic problems based on cloud computing[J]. Transactions of China Electrotechnical Society, 2016, 31 (22): 5- 11. |
8 | QIAO Ji, ZOU Jun, YUAN Jiansheng, et al. A new finite difference based approach for calculating ion flow field of HVDC transmission lines[J]. Transactions of China Electrotechnical Society, 2015, 30 (6): 85- 91. |
9 | WANG Zezhong, DONG Bo, LIU Chunming, et al. Three-dimensional earth conductivity structure modelling in North China and calculation of geoelectromagnetic fields during geomagnetic disturbances based on finite element method[J]. Transactions of China Electrotechnical Society, 2015, 30 (3): 61- 66. |
10 | XIE Dexin, ZHU Zhanxin, WU Dongyang, et al. Plight and perspective of large-scale engineering eddy current field FEM computation[J]. Proceedings of the CSEE, 2015, 35 (5): 1250- 1257. |
11 | CHEN Shenshen, WANG Juan. Application of a coupled interpolating element-free Galerkin scaled boundary method and finite element method in fracture analysis of piezoelectric materials[J]. Applied Mathematics and Mechanics, 2018, 39 (11): 1258- 1267. |
12 | CHEN Shenshen, LIU Yinghua, CEN Zhangzhi. Shakedown analysis by using the element free Galerkin method with orthogonal basis and nonlinear programming[J]. Chinese Journal of Computational Mechanics, 2009, 26 (1): 80- 86. |
13 | WANG Xiaodong, OUYANG Jie, WANG Yulong, et al. Nodal integration element-free Galerkin method with upwind shifted integration nodes[J]. Chinese Journal of Computational Physics, 2012, 29 (2): 183- 190. |
14 | YANG Qingxin, LIU Suzhen, CHEN Haiyan. The study of some key problems in element-free Galerkin method for electromagnetic field computations[J]. Journal of Hebei University of Technology, 2004, 33 (2): 28- 34. |
15 | ZHANG Huaiqing, NIE Xin, WANG Yawei, et al. Application of radial basis function-virtual boundary method in electromagnetic computation[J]. Transactions of China Electrotechnical Society, 2014, 29 (4): 79- 84. |
16 | LIN Yanzhong, CHEN Bing, XU Xu. Radial basis function interpolation in moving mesh technique[J]. Chinese Journal of Computational Physics, 2012, 29 (2): 191- 197. |
17 | CHEN Wen, FU Zhuojia, CHEN C S. Recent advances in radial basis function collocation methods[M]. Heidelberg: Springer, 2014. |
18 | WANG Fajie, CHEN Wen, HUA Qingsong. A simple empirical formula of origin intensity factor in singular boundary method for two-dimensional Hausdorff derivative Laplace equations with Dirichlet boundary[J]. Computers & Mathematics with Applications, 2018, 76 (5): 1075- 1084. |
19 | WANG Fajie, CHEN Wen. Accurate empirical formulas for the evaluation of origin intensity factor in singular boundary method using time-dependent diffusion fundamental solution[J]. International Journal of Heat and Mass Transfer, 2016, 103 (1): 360- 369. |
20 | LI Yudong, WANG Fajie, CHEN Wen. MATLAB implementation of a singular boundary method for transient heat conduction[J]. Applied Mathematics and Mechanics, 2019, 40 (3): 259- 268. |
21 |
CHEN Wen, SHEN L J, SHEN Z J, et al. Boundary knot method for Poisson equations[J]. Engineering Analysis with Boundary Elements, 2005, 29 (8): 756- 760.
DOI |
22 | SHI Jinhong, FU Zhuojia, CHEN Wen. Boundary knot method for 2D transient heat conduction problems[J]. Applied Mathematics and Mechanics, 2014, 35 (2): 111- 120. |
23 | WANG Fajie, ZHANG Yaoming, GONG Yanpeng. Inverse identification of boudary conditions for anisotropic potential problems of thin body using MFS[J]. Engineering Mechanics, 2016, 33 (2): 18- 24. |
24 |
CHEN C S, GOLBERG M A, HON Y C. The method of fundamental solutions and quasi-Monte-Carlo method for diffusion equations[J]. International Journal for Numerical Methods in Engineering, 1998, 43 (8): 1421- 1435.
DOI |
25 | MARIN L, LESNIC D. The method of fundamental solutions for nonlinear functionally graded materials[J]. International Journal of Solids & Structures, 2007, 44 (21): 6878- 6890. |
26 | SUN Yao, MARIN L. An invariant method of fundamental solutions for two-dimensional isotropic linear elasticity[J]. International Journal of Solids & Structures, 2017, 117 (1): 191- 207. |
27 | ALVES C J S, ANTUNES P R S. The method of fundamental solutions applied to boundary value problems on the surface of a sphere[J]. Computers & Mathematics with Applications, 2018, 75 (7): 2365- 2373. |
28 | WANG Fajie, GU Yan, QU Wenzhen, et al. Localized boundary knot method and its application to large-scale acoustic problems[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 361 (1): 112729. |
29 | FAN Chia-Ming, HUANG Y K, CHEN C S, et al. Localized method of fundamental solutions for solving two-dimensional Laplace and biharmonic equations[J]. Engineering Analysis with Boundary Elements, 2019, 101 (1): 188- 197. |
30 | QU Wen, FAN Chia-Ming, GU Yan, et al. Analysis of three-dimensional interior acoustic fields by using the localized method of fundamental solutions[J]. Applied Mathematical Modelling, 2019, 76 (1): 122- 132. |
31 |
YUE Xingxing, WANG Fajie, ZHANG Chuanzeng, et al. Localized boundary knot method for 3D inhomogeneous acoustic problems with complicated geometry[J]. Applied Mathematical Modelling, 2021, 92, 410- 421.
DOI |
32 | GU Yan, FAN Chia-Ming, XU Rui-Ping. Localized method of fundamental solutions for large-scale modeling of two-dimensional elasticity problems[J]. Applied Mathematics Letters, 2019, 93 (1): 8- 14. |
33 | GU Yan, FAN Chia-Ming, QU Wenzhen, et al. Localized method of fundamental solutions for large-scale modelling of three-dimensional anisotropic heat conduction problems-Theory and MATLAB code[J]. Computers & Structures, 2019, 220 (1): 144- 155. |
34 |
BELYTSCHKO T, KRONGAUZ Y, ORGAN D, et al. Meshless methods: An overview and recent developments[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139 (1-4): 3- 47.
DOI |
[1] | WANG Leilei, JI Le, MA Wentao. Steady Heat Conduction Analysis of Functionally Graded Materials with Barycentric Lagrange Interpolation Collocation Method [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(2): 173-181. |
[2] | WANG Zhaoqing, XU Zikang. Mixed Displacement-Pressure Collocation Method for Plane Elastic Problems [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(1): 77-86. |
[3] | TANG Qiuming, GAO Qiang. Influence of Wind Sand Flow on Potential and Electric Field Distributions Along High Voltage Insulators [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 33(5): 539-546. |
[4] | CHEN Shenshen, LI Qinghua, OU Manli. Meshless Kriging Interpolation Method for Bending of a Moderately Thick Plate [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 30(4): 547-553. |
[5] | WANG Haitao, ZENG Xiangyang. Meshless Models for Numerical Calculation of Scattering Coefficients of Periodic Structures [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 30(2): 229-236. |
[6] | ZHENG Xing, MA Qingwei, DUAN Wenyang. K2_SPH Method and Simulation of 2D Breaking Waves [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 29(3): 317-325. |
[7] | ZHENG Xing, DUAN Wenyang. K2_.SPH Method and Application for 2D Nonlinear Water Wave Simulation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 28(5): 659-666. |
[8] | YIN Jianwei, MA Zhibo. Reproducing Kernel Particle Method in Smoothed Particle Hydrodynamics [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 26(4): 553-558. |
[9] | ZHANG Huaiqing, YU Jihui, ZHENG Yali. Radial Basis Functions and Coupled Method in Computational Electromagnetics [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 26(2): 299-310. |
[10] | QIANG Hongfu, GAO Weiran. SPH Method with Fully Variable Smoothing Lengths and Implementation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 25(5): 569-575. |
[11] | NIE Yufeng, MENG Zhuo, FAN Xiangkuo. Optimal Influence Radius of Weight Functions in Meshless Methods in Three Dimensions [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 25(3): 269-274. |
[12] | WEN Wanzhi, DONG Shishun, HANG Xudeng, HU Xiaoyan. Computational Methods in Two-dimensional Moving Least Squares Particle Hydrodynamics [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 25(2): 157-162. |
[13] | LI Shoufu, ZHANG Yuan, LIU Yuzhen. A Class of Meshless Methods for Heat Conduction Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 24(5): 573-580. |
[14] | HE Zeng, LÜ Junchao, DAI Chenghao. A Fast Multiple Boundary Element Method for Two-dimensional Electrostatic Field with Arbitrary Plane Charge Distribution [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 24(4): 433-438. |
[15] | ZENG Yishan, ZENG Qinghong. An Improved Element Free Galerkin Method [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 24(1): 35-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.