Chinese Journal of Computational Physics ›› 2021, Vol. 38 ›› Issue (6): 631-660.DOI: 10.19596/j.cnki.1001-246x.8379
• Review Article • Next Articles
Aiguo XU1,2,3(), Jiahui SONG4,1, Feng CHEN5, Kan XIE4, Yangjun YING1
Received:
2021-04-15
Online:
2021-11-25
Published:
2022-04-27
CLC Number:
Aiguo XU, Jiahui SONG, Feng CHEN, Kan XIE, Yangjun YING. Modeling and Analysis Methods for Complex Fields Based on Phase Space[J]. Chinese Journal of Computational Physics, 2021, 38(6): 631-660.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8379
Fig.4 A set of configurations with temperature contour in the shock loading and unloading procedure (a) t=500 ns; (b) t=750 ns; (c) t=850 ns; (d) t=1100 ns
Fig.9 Condensed temperature patterns at 500 ns in three similar dynamical procedures (a) V=1000 m ·s-1, DT=92 K; (b) V=1100 m ·s-1, DT=120 K; (c) V=1200 m ·s-1, DT=154 K
Fig.21 At Kn=0.5, (a) velocity perturbations for a BGK gas; (b) temperature perturbations for a BGK gas; (c) velocity perturbations for a hard-sphere gas; (d) temperature perturbations for a hard-sphere gas[55]
Fig.25 A schematic of Minkowski morphological quantity, SD stage duration at different relaxation time (viscosity coefficient) and local average speed
Fig.26 (a) Evolutions of the characteristic domain sizes R; (b) Evolutions of the boundary length L and the xx component of some TNE manifestations; (c) Evolutions of the boundary lengths L (solid curves) and the corresponding TNE intensities D (curves with solid symbols) in phase separation processes with various K; (d) Duration of the spinodal decomposition stage tSD and the maximum TNE intensity Dmax as functions of K
Fig.35 Temperature distributions of coupled RTKHI (a) g=0.005, u0=0.05; (b)g=0.005, u0=0.1; (c) g=0.005, u0=0.15 (Images from left to right correspond to t=100, 150, 200, 250, 300, respectively.)
1 | 陈式刚. 非平衡统计力学[M]. 北京: 科学出版社, 2010. |
2 | 沈惠川. 统计力学[M]. 合肥: 中国科学技术大学出版社, 2011. |
3 | SERRA J. Image analysis and mathematical morphology[M]. New York: Academic, Vols(1/2), 1982. |
4 |
MECKE K R. Morphological characterization of patterns in reaction-diffusion systems[J]. Phys Rev E, 1996, 53, 4794.
DOI |
5 |
AKSIMENTIEV A, MOORTHI K, HOLYST R. Scaling properties of the morphological measures at the early and intermediate stages of the spinodal decomposition in homopolymer blends[J]. J Chem Phys, 2000, 112, 1.
DOI |
6 |
MECKE K R, SOFONEA V. Morphology of spinodal decomposition[J]. Phys Rev E, 1997, 56, R3761- R3764.
DOI |
7 |
GÒŹDŹ W, HOŁYST R. High genus periodic gyroid surfaces of nonpositive Gaussian curvature[J]. Physical Review Letters, 1996, 76 (15): 2726.
DOI |
8 |
XU A, ZHANG G, YING Y, et al. Shock wave response of porous materials: From plasticity to elasticity[J]. Phys Scr, 2010, 81, 055805.
DOI |
9 |
XU A, ZHANG G, LI H, et al. Comparison study on characteristic regimes in shocked porous materials[J]. Chinese Phys Lett, 2010, 27 (2): 026201.
DOI |
10 |
XU A, ZHANG G, LI H, et al. Dynamical similarity in shock wave response of porous material: From the view of pressure[J]. Comput Math Appl, 2011, 61, 3618.
DOI |
11 |
XU A, ZHANG G, LI H, et al. Temperature pattern dynamics in shocked porous materials[J]. Sci China: Phys Mech Astron, 2010, 53 (8): 1466- 1474.
DOI |
12 |
GAN Y, XU A, ZHANG G, et al. Phase separation in thermal systems: A lattice Boltzmann study and morphological characterization[J]. Physical Review E, 2011, 84 (4): 046715.
DOI |
13 |
GAN Yanbiao, XU Aiguo, ZHANG Guangcai, et al. Lattice Boltzmann study of thermal phase separation: Effects of heat conduction, viscosity and Prandtl number[J]. Europhysics Letters, 2012, 97 (4): 44002.
DOI |
14 |
ZHANG Yudong, XU Aiguo, ZHANG Guangcai, et al. Entropy production in thermal phase separation: A kinetic-theory approach[J]. Soft Matter, 2019, 15 (10): 2245- 2259.
DOI |
15 |
CHEN Feng, XU Aiguo, ZHANG Yudong, et al. Morphological and non-equilibrium analysis of coupled Rayleigh-Taylor-Kelvin-Helmholtz instability[J]. Physics of Fluids, 2020, 32, 104111.
DOI |
16 | XU Aiguo, ZHANG Guangcai, YING Yangjun, et al. Complex fields in heterogeneous materials under shock: Modeling, simulation and analysis[J]. Science China: Physics, Mechanics & Astronomy, 2016, 59, 650501. |
17 |
XU Aiguo, ZHANG Guangcai, PAN X, et al. Morphological characterization of shocked porous material[J]. Journal of Physics D: Applied Physics, 2009, 42 (7): 075409.
DOI |
18 |
XU Aiguo, ZHANG Guangcai, ZHANG Ping, et al. Dynamics and thermodynamics of porous HMX-like material under shock[J]. Communications in Theoretical Physics, 2009, 52 (5): 901.
DOI |
19 |
许爱国, 张广财, 蔚喜军, 等. 冲击作用下多孔材料热力学特征的模拟与分析[J]. 中国工程科学, 2009, 11 (9): 13- 19.
DOI |
20 |
GAN Yanbiao, XU Aiguo, ZHANG Guangcai, et al. Discrete Boltzmann modeling of multiphase flows: Hydrodynamic and thermodynamic non-equilibrium effects[J]. Soft Matter, 2015, 11 (26): 5336- 5345.
DOI |
21 |
XU Aiguo, ZHANG Guangcai, GAN Yanbiao, et al. Lattice Boltzmann modeling and simulation of compressible flows[J]. Frontiers of Physics, 2012, 7 (5): 582- 600.
DOI |
22 |
CAGIN T, PETTITT B M. Grand molecular dynamics: A method for open systems[J]. Molecular Simulation, 1991, 6 (1-3): 5- 26.
DOI |
23 |
WU L, WHITE C, SCANLON T J, et al. Deterministic numerical solutions of the Boltzmann equation using the fast spectral method[J]. Journal of Computational Physics, 2013, 250, 27- 52.
DOI |
24 | BIRD G A. Recent advances and current challenges for DSMC[J]. Computers & Mathematics with Applications, 1998, 35 (1-2): 1- 14. |
25 |
GRAD H. On the kinetic theory of rarefied gases[J]. Communications on Pure and Applied Mathematics, 1949, 2 (4): 331- 407.
DOI |
26 | 刘畅, 徐昆. 离散时空直接建模思想及其在模拟多尺度输运中的应用[J]. 空气动力学学报, 2020, 38 (2): 197- 216. |
27 | SUCCI S. The lattice Boltzmann equation: For complex states of flowing matter[M]. Oxford University Press, 2018. |
28 | 郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京: 科学出版社, 2009. |
29 | HE Y L, WANG Y, LI Q. Lattice Boltzmann method: Theory and applications[M]. Beijing: Science Press, 2009. |
30 | HUANG H, SUKOP M C, LU X. Multiphase lattice Boltzmann methods: Theory and application[M]. Wiley, 2015. |
31 |
LIANG H, HU X, HUANG X, et al. Direct numerical simulations of multi-mode immiscible Rayleigh-Taylor instability with high Reynolds numbers[J]. Physics of Fluids, 2019, 31 (11): 112104.
DOI |
32 |
SUN D. A discrete kinetic scheme to model anisotropic liquid-solid phase transitions[J]. Applied Mathematics Letters, 2020, 103, 106222.
DOI |
33 |
QIAN Y H, D'HUMIÈRES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics Letters, 1992, 17 (6): 479.
DOI |
34 |
SHAN X, CHEN H. Lattice Boltzmann model for simulating flows with multiple phases and components[J]. Physical Review E, 1993, 47 (3): 1815.
DOI |
35 |
CHEN S, CHEN H, MARTNEZ D, et al. Lattice Boltzmann model for simulation of magnetohydrodynamics[J]. Physical Review Letters, 1991, 67 (27): 3776.
DOI |
36 | CHAI Z, SHI B. Multiple-relaxation-time lattice Boltzmann method for the Navier-Stokes and nonlinear convection-diffusion equations: Modeling, analysis, and elements[J]. Physical Review E, 2020, 102 (2): 023306. |
37 |
DU R, SUN D, SHI B, et al. Lattice Boltzmann model for time sub-diffusion equation in Caputo sense[J]. Applied Mathematics and Computation, 2019, 358, 80- 90.
DOI |
38 | XING H, DONG X, SUN D, et al. Anisotropic lattice Boltzmann-phase-field modeling of crystal growth with melt convection induced by solid-liquid density change[J]. Journal of Materials Science & Technology, 2020, 57, 26- 32. |
39 | ZHAN C, CHAI Z, SHI B. A lattice Boltzmann model for the coupled cross-diffusion-fluid system[J]. Applied Mathematics Letters, 2021, 400, 126105. |
40 | LI Xindong, ZHAO Yingkui, HU Zongmin, et al. Investigation of normal shock structure by using Navier-Stokes equations with the second viscosity[J]. Chinese Journal of Computational Physics, 2020, 37 (5): 505- 513. |
41 | LI Xiao, SUN Chen, SHEN Zhijun. Numerical simulation of one-dimensional elastic-perfectly plastic flow and suppression of wall heating phenomenon[J]. Chinese Journal of Computational Physics, 2020, 37 (5): 539- 550. |
42 | SUN Chen, LI Xiao, SHEN Zhijun. A Godunov method with staggered Lagrangian discretization applicable to isentropic flows[J]. Chinese Journal of Computational Physics, 2020, 37 (5): 529- 538. |
43 | ZHAO Fei, SHENG Zhiqiang, YUAN Guangwei. A positivity-preserving finite volume scheme based on second-order scheme[J]. Chinese Journal of Computational Physics, 2020, 37 (4): 379- 392. |
44 |
KARBALAEI A, KUMAR R, CHO H J. Thermocapillarity in microfluidics-A review[J]. Micromachines, 2016, 7 (1): 13.
DOI |
45 |
许爱国, 张广财, 应阳君. 燃烧系统的离散Boltzmann建模与模拟研究进展[J]. 物理学报, 2015, 64, 184701.
DOI |
46 | XU Aiguo, ZHANG Guangcai, ZHANG Yudong. Discrete Boltzmann modeling of compressible flows[M]//KYZAS G Z, MITROPOULOS A C, eds. Kinetic Theory, Chap 02. Rijeka: InTech, 2018. |
47 | 许爱国, 张广财, 甘延标. 相分离过程的离散Boltzmann方法研究进展[J]. 力学与实践, 2016, 38 (4): 361- 374. |
48 | 许爱国, 陈杰, 宋家辉, 等. 多相流系统的离散玻尔兹曼研究进展[J]. 空气动力学学报, 2021, 39 (3): 1- 32. |
49 |
XU Aiguo, LIN Chuangdong, ZHANG Guangcai, et al. Multiple-relaxation-time lattice Boltzmann kinetic model for combustion[J]. Physical Review E, 2015, 91 (4): 043306.
DOI |
50 |
MCNAMARA G R, ZANETTI G. Use of the Boltzmann equation to simulate lattice automata[J]. Phys Rev Lett, 1988, 61, 2332.
DOI |
51 |
MANELA A, HADJICONSTANTINOU N G. Gas-flow animation by unsteady heating in a microchannel[J]. Physics of Fluids, 2010, 22 (6): 062001.
DOI |
52 |
HOMOLLE T M M, HADJICONSTANTINOU N G. Low-variance deviational simulation Monte Carlo[J]. Physics of Fluids, 2007, 19 (4): 041701.
DOI |
53 |
HOMOLLE T M M, HADJICONSTANTINOU N G. A low-variance deviational simulation Monte Carlo for the Boltzmann equation[J]. Journal of Computational Physics, 2007, 226 (2): 2341- 2358.
DOI |
54 |
RADTKE G A, HADJICONSTANTINOU N G, WAGNER W. Low-noise Monte Carlo simulation of the variable hard sphere gas[J]. Physics of Fluids, 2011, 23 (3): 030606.
DOI |
55 |
ZHANG Y, XU A, ZHANG G, et al. Discrete Boltzmann method for non-equilibrium flows: Based on Shakhov model[J]. Computer Physics Communications, 2019, 238, 50- 65.
DOI |
56 |
SHANKAR P N, DESHPANDE M D. Fluid mechanics in the driven cavity[J]. Annual Review of Fluid Mechanics, 2000, 32 (1): 93- 136.
DOI |
57 | JOHN B, GU X J, EMERSON D R. Effects of incomplete surface accommodation on non-equilibrium heat transfer in cavity flow: A parallel DSMC study[J]. Computers & Fluids, 2011, 45 (1): 197- 201. |
58 |
HUANG J C, XU K, YU P. A unified gas-kinetic scheme for continuum and rarefied flows Ⅱ: Multi-dimensional cases[J]. Communications in Computational Physics, 2012, 12 (3): 662- 690.
DOI |
59 |
GAN Y, XU A, ZHANG G, et al. Discrete Boltzmann trans-scale modeling of high-speed compressible flows[J]. Physical Review E, 2018, 97 (5): 053312.
DOI |
60 |
YE X Y, LIN F W, HUANG X J, et al. Polymer fibers with hierarchically porous structure: Combination of high temperature electrospinning and thermally induced phase separation[J]. Rsc Advances, 2013, 3 (33): 13851- 13858.
DOI |
61 |
YEGANEH J K, GOHARPEY F, FOUDAZI R. Anomalous phase separation behavior in dynamically asymmetric LCST polymer blends[J]. RSC Advances, 2014, 4 (25): 12809- 12825.
DOI |
62 |
CORBERI F, GONNELLA G, LAMURA A. Spinodal decomposition of binary mixtures in uniform shear flow[J]. Physical Review Letters, 1998, 81 (18): 3852.
DOI |
63 |
XU A, GONNELLA G, LAMURA A. Phase-separating binary fluids under oscillatory shear[J]. Physical Review E, 2003, 67 (5): 056105.
DOI |
64 |
VERBERG R, POOLEY C M, YEOMANS J M, et al. Pattern formation in binary fluids confined between rough, chemically heterogeneous surfaces[J]. Physical Review Letters, 2004, 93 (18): 184501.
DOI |
65 |
POOLEY C M, YEOMANS J M. Stripe formation in differentially forced binary systems[J]. Physical Review Letters, 2004, 93 (11): 118001.
DOI |
66 |
MARENDUZZO D, ORLANDINI E, YEOMANS J M. Permeative flows in cholesteric liquid crystals[J]. Physical Review Letters, 2004, 92 (18): 188301.
DOI |
67 |
XU A, GONNELLA G, LAMURA A. Morphologies and flow patterns in quenching of lamellar systems with shear[J]. Physical Review E, 2006, 74 (1): 011505.
DOI |
68 |
GONNELLA G, LAMURA A, SOFONEA V. Lattice Boltzmann simulation of thermal nonideal fluids[J]. Physical Review E, 2007, 76 (3): 036703.
DOI |
69 | ZHANG Y D, XU A G, QIU J J, et al. Kinetic modeling of multiphase flow based on simplified Enskog equation[J]. Frontiers of Physics, 2020, 15 (6): 1- 13. |
70 |
CRISTINI V, TAN Y C. Theory and numerical simulation of droplet dynamics in complex flows-a review[J]. Lab on a Chip, 2004, 4 (4): 257- 264.
DOI |
71 |
TEZDUYAR T E. Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195 (23-24): 2983- 3000.
DOI |
72 |
SZEWC K, POZORSKI J, MINIER J P. Simulations of single bubbles rising through viscous liquids using smoothed particle hydrodynamics[J]. International Journal of Multiphase Flow, 2013, 50, 98- 105.
DOI |
73 | 赵明娟, 邓志成, 赵龙志. 激光熔注中增强相颗粒对晶粒生长影响的CA模拟[J]. 功能材料, 2015, 46 (1): 6. |
74 |
DU L F, ZHANG R, ZHANG L M. Phase-field simulation of dendritic growth in a forced liquid metal flow coupling with boundary heat flux[J]. Science China Technological Sciences, 2013, 56 (10): 2586- 2593.
DOI |
75 |
JACQMIN D. Calculation of two-phase Navier-Stokes flows using phase-field modeling[J]. Journal of Computational Physics, 1999, 155 (1): 96- 127.
DOI |
76 |
XU A, GONNELLA G, LAMURA A. Numerical study of the ordering properties of lamellar phase[J]. Physica A: Statistical Mechanics and Its Applications, 2004, 344 (3-4): 750- 756.
DOI |
77 |
XU A, GONNELLA G, LAMURA A. Simulations of complex fluids by mixed lattice Boltzmann-finite difference methods[J]. Physica A: Statistical Mechanics and Its Applications, 2006, 362 (1): 42- 47.
DOI |
78 |
XU A, GONNELLA G, LAMURA A, et al. Scaling and hydrodynamic effects in lamellar ordering[J]. EPL (Europhysics Letters), 2005, 71 (4): 651- 651.
DOI |
79 |
ZHOU Y. Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing Ⅰ[J]. Physics Reports, 2017, 720-722, 1- 136.
DOI |
80 |
ZHOU Y. Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing Ⅱ[J]. Physics Reports, 2017, 723-725, 1- 160.
DOI |
81 | 廖深飞, 邹立勇, 黄熙龙, 等. Richtmyer-Meshkov不稳定的双椭圆气柱相互作用的PIV研究[J]. 中国科学: 物理学力学天文学, 2016, 46, 034702. |
82 |
DING J, SI T J, YANG J, et al. Shock tube experiments on converging Richtmyer-Meshkov instability[J]. Physical Review Letters, 2017, 119, 014501.
DOI |
83 |
HUANG S, XU J, LUO Y, et al. Smoothed particle hydrodynamics simulation of converging Richtmyer-Meshkov instability[J]. Physics of Fluids, 2020, 32, 086102.
DOI |
84 |
WANG Z, XUE K, HAN P. Bell-Plesset effects on Rayleigh-Taylor instability at cylindrically divergent interfaces between viscous fluids[J]. Physics of Fluids, 2021, 33 (3): 034118.
DOI |
85 |
LAI H, XU A, ZHANG G, et al. Nonequilibrium thermohydrodynamic effects on the Rayleigh-Taylor instability in compressible flows[J]. Physical Review E, 2016, 94 (2): 023106.
DOI |
86 | CHEN F, XU A G, ZHANG G C. Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh-Taylor instability[J]. Frontiers of Physics, 2016, 11 (6): 1- 14. |
87 |
LIN C, XU A, ZHANG G, et al. Discrete Boltzmann modeling of Rayleigh-Taylor instability in two-component compressible flows[J]. Physical Review E, 2017, 96 (5): 053305.
DOI |
88 |
YE H, LAI H, LI D, et al. Knudsen number effects on two-dimensional Rayleigh-Taylor instability in compressible fluid: Based on a discrete Boltzmann method[J]. Entropy, 2020, 22 (5): 500.
DOI |
89 |
CHEN F, XU A, ZHANG G. Collaboration and competition between Richtmyer-Meshkov instability and Rayleigh-Taylor instability[J]. Physics of Fluids, 2018, 30 (10): 102105.
DOI |
[1] | HUA Wei, LV Yan, LIU Shixing, LIU Xueshen. Dynamic Study of Cubic-Quintic Nonlinear Schrödinger Equation and Pattern Drifting [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(4): 495-504. |
[2] | LIU Xue-shen, HUA Wei, DING Pei-zhu. Dynamic Properties of Nonlinear Schrödinger Equation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 21(6): 495-500. |
[3] | YOU Rong-yi, CHEN Zhong. Calculation of the Approximate Entropy and the Information Entropy of EEG in Phase Space [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 21(4): 341-344. |
[4] | Hongdong Zhang, Jianming Lu, Yuliang Yang. STOCHASTIC BOUNDARY CONDITIONS OF MONTE CARLO STATISTICAL PHYSICS [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 9(2): 197-202. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.