1 |
ZHU Z , NANDI A K . Automatic modulation classification: Principles, algorithms and applications[M]. Hoboken: John Wiley and Sons, 2015.
|
2 |
邓兵, 张韫, 李炳荣. 通信对抗原理及应用[M]. 北京: 电子工业出版社, 2017.
|
3 |
WEAVER C S, COLE C A, KRUMLAND R B, et al. The automatic classification of modulation types by pattern recognition[R]. Stanford Electronics Laboratories, Technical Report, 1969.
|
4 |
WU H C , SAQUIB M , YUN Z F . Novel automatic modulation classification using cumulant features for communications via multipath channels[J]. IEEE Transactions on Wireless Communications, 2008, 7 (8): 3098- 3105.
DOI
|
5 |
NIE Y N, SHEN X, HUANG S, et al. Automatic modulation classification based multi-ple cumulants and quasi-Newton method for MIMO system[C]//2017 IEEE Wireless Communications and Networking Conference (WCNC), 2017: 1-5.
|
6 |
KISHORE T R , RAO K D . Automatic intrapulse modulation classification of advanced LPI radar waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53 (2): 901- 914.
DOI
|
7 |
HAN L , GAO F , LI Z , et al. Low complexity automatic modulation classification based on order-statistics[J]. IEEE Transactions on Wireless Communications, 2017, 16 (1): 400- 411.
DOI
|
8 |
LU X R , HUANG H D , LI S , et al. Salt-body classification method based on U-Net[J]. Chinese Journal of Computational Physics, 2020, 37 (3): 327- 334.
|
9 |
ZHOU Y H , LIU H Q , QI P , et al. Forecast of oil production in fractured-vuggy reservoir by using recurrent neural networks[J]. Chinese Journal of Computational Physics, 2018, 35 (6): 668- 674.
|
10 |
O'SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]//International Conference on Engineering Applications of Neural Networks, 2016: 213-226.
|
11 |
O'SHEA T J, WEST N. Radio machine learning dataset generation with gnu radio[C]//Proceedings of the GNU Radio Conference, 2016: 213-226.
|
12 |
RAJENDRAN S , MEERT W , GIUSTINIANO D , et al. Deep learning models for wireless signal classification with distributed low-cost spectrum sensors[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4 (3): 433- 445.
DOI
|
13 |
HAUSER S C, HEADLEY W C, MICHAELS A J. Signal detectlon effects on deep neural networks utlizing raw IQ for modulation clasfcatlon[C]//IEEE Military Commmunicationa Conference, 2017: 121-127.
|
14 |
ALI A , FAN Y Y . Automatic modulation classification using deep learning based on sparse autoencoders with nonnegativity constraints[J]. IEEE Signal Processing Letters, 2017, 24 (11): 1626- 1630.
DOI
|
15 |
ALI A , FAN Y Y . Unsupervised feature learning and automatic modulation classification using deep learning model[J]. Physical Communication, 2017, 25 (1): 75- 84.
|
16 |
任思睿, 黄铭. 基于改进的长短期记忆网络的调制识别算法[J]. 云南大学学报(自然科学版), 2021, 43 (1): 39- 45.
|
17 |
张婷婷, 方宇强, 韩蕾. 基于深度残差网络的自动调制识别方法研究[J]. 计算机仿真, 2021, 38 (1): 178- 181.
|
18 |
许华, 苟泽中, 蒋磊, 等. 适用于样本分布差异的迁移学习调制识别算法[J]. 华中科技大学学报(自然科学版), 2021, 49 (4): 127- 132.
|
19 |
FRENAY B , VERLEYSEN M . Classification in the presence of label noise: A survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25 (5): 845- 869.
DOI
|
20 |
ANGELOVA A, ABU-MOSTAFAM Y, PERONA P. Pruning training sets for learning of object categories[C]//2005 IEEE Computer Society Conference on Computer Visionand Pattern Recognition (CVPR'05), 2005: 494-501.
|
21 |
GHOSH A , MANWANI N , SASTRY P S . Making risk minimization tolerant to label noise[J]. Neurocomputing, 2015, 160 (Jul.21): 93- 107.
|
22 |
GHOSH A, KUMAR H, SASTRY P S. Robust loss functions under label noise for deepneural networks[C]//Proceedings of the Thirty-First AAAI Conference on Artifcial Intelligence, 2017: 1919-1925.
|
23 |
ZHANG Z L, SABUNCU M R. Generalized cross entropy loss for training deep neural networks with noisy labels[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018: 8792-8802.
|
24 |
O'SHEA T J, WEST N. Deep architectures for modulation recognition[C]//IEEE International Symposium on Dynamic Spectrum Access Networks, 2017: 1-6.
|