Chinese Journal of Computational Physics ›› 2023, Vol. 40 ›› Issue (1): 91-105.DOI: 10.19596/j.cnki.1001-246x.8550
• Research Reports • Previous Articles Next Articles
Zhenbo LI1,2(), Yezhi TANG1,2
Received:
2022-04-24
Online:
2023-01-25
Published:
2023-07-04
Zhenbo LI, Yezhi TANG. Multivariable Function Projective Synchronization of High Dimensional Chaotic Systems and Its Secure Communication Scheme[J]. Chinese Journal of Computational Physics, 2023, 40(1): 91-105.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8550
同步误差向量 | 同步类型 | 比例因子Γ |
ei=xi-Γyi 其中xi为驱动向量,yi为响应向量,Γ为比例因子 | 完全同步 | Γ=1 |
投影同步 | Γ为常数,大小由驱动系统初值决定 | |
广义投影同步 | Γ为常数,大小可任意指定 | |
一元函数投影同步 | Γ为时间t的一元函数 | |
二元函数投影同步 | Γ为二元函数 | |
多元函数投影同步 | Γ为多元函数 |
Table 1 Different kinds of projective synchronization
同步误差向量 | 同步类型 | 比例因子Γ |
ei=xi-Γyi 其中xi为驱动向量,yi为响应向量,Γ为比例因子 | 完全同步 | Γ=1 |
投影同步 | Γ为常数,大小由驱动系统初值决定 | |
广义投影同步 | Γ为常数,大小可任意指定 | |
一元函数投影同步 | Γ为时间t的一元函数 | |
二元函数投影同步 | Γ为二元函数 | |
多元函数投影同步 | Γ为多元函数 |
Fig.1 Time response of System (8) and (9) with scaling function Γ1 (a) time response of x1 and x2; (b) time response of y1 and y2; (c) time response of z1 and z2; (d) time response of ω1 and ω2
Fig.3 Synchronization results of System (8) and (9) with scaling function Γ1 (a) synchronization results of x1 and x2; (b) synchronization results of y1 and y2; (c) synchronization results of z1 and z2; (d) synchronization results of ω1 and ω2
Fig.7 Time response of System (8) and (9) with scaling function Γ2 (a) time response of x1 and x2; (b) time response of y1 and y2; (c) time response of z1 and z2; (d) time response of ω1 and ω2
Fig.9 Synchronization results of System (8) and (9) with scaling function Γ2 (a) synchronization results of and x2; (b) synchronization results of y1 and y2; (c) synchronization results of z1 and z2; (d) synchronization results of ω1 and ω2
1 |
DOI |
2 |
|
3 |
DOI |
4 |
DOI |
5 |
DOI |
6 |
|
7 |
|
8 |
|
9 |
DOI |
10 |
DOI |
11 |
DOI |
12 |
DOI |
13 |
|
14 |
DOI |
15 |
DOI |
16 |
DOI |
17 |
|
18 |
DOI |
19 |
DOI |
20 |
李震波, 赵小山, 王靖. 基于改进的主动控制法实现混沌系统广义投影同步[J]. 物理学报, 2011, 60 (5): 113- 120.
|
21 |
|
22 |
DOI |
23 |
|
24 |
DOI |
25 |
DOI |
26 |
方洁, 娄新杰, 方娜, 等. 多混沌系统自适应组合函数投影同步[J]. 东北师大学报(自然科学版), 2020, 52 (1): 98- 103.
|
27 |
李爽, 徐伟, 李瑞红, 等. 异结构系统混沌同步的新方法[J]. 物理学报, 2006, (11): 5681- 5687.
|
28 |
DOI |
29 |
段青, 李凤祥, 田兆垒. 一种改进的小波阈值信号去噪方法[J]. 计算机仿真, 2009, 26 (4): 348- 351.
|
30 |
吴叶丽, 行鸿彦, 李瑾, 等. 改进阈值函数的小波去噪算法[J]. 电子测量与仪器学报, 2022, 36 (4): 9- 16.
|
31 |
付宏睿, 董永刚, 张建刚. 基于新四维混沌系统的复杂网络的混沌保密通信及噪声研究[J]. 东北师大学报(自然科学版), 2018, 50 (4): 73- 77.
|
32 |
王晓燕, 瞿少成, 田文汇, 等. 异结构混沌系统同步及其在保密通信中的应用[J]. 计算机应用研究, 2009, 26 (5): 1874- 1876.
|
33 |
于娜, 丁群, 陈红. 异结构系统混沌同步及其在保密通信中的应用[J]. 通信学报, 2007, (10): 73- 78.
|
[1] | Ya-qiong JIA, Bin YU. Differential Chaos Shift Keying Secure Communication System Based on Repeated Chaotic Spreading Sequence [J]. Chinese Journal of Computational Physics, 2022, 39(4): 491-497. |
[2] | QIAN Hui, YU Hongjie. Application of SC Projective Synchronization Method in Secure Communication [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 33(1): 117-126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.