Chinese Journal of Computational Physics ›› 2023, Vol. 40 ›› Issue (4): 511-518.DOI: 10.19596/j.cnki.1001-246x.8588
Previous Articles Next Articles
Li LOU(), Fengxia ZHANG*(
), Boxun HAN
Received:
2022-07-08
Online:
2023-07-25
Published:
2023-10-13
Contact:
Fengxia ZHANG
Li LOU, Fengxia ZHANG, Boxun HAN. Research on Salt Dome Identification Algorithm Based on Image Segmentation[J]. Chinese Journal of Computational Physics, 2023, 40(4): 511-518.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8588
主干网络 | Accuracy/% | IoU/% |
ResNet50 | 96.8 | 84.05 |
ResNet101 | 96.8 | 85.13 |
ResNet152 | 96.9 | 85.38 |
SE-ResNet152 | 97.1 | 86.12 |
SENet154 | 97.5 | 87.26 |
Table 1 Comparison of experimental results of different backbone networks
主干网络 | Accuracy/% | IoU/% |
ResNet50 | 96.8 | 84.05 |
ResNet101 | 96.8 | 85.13 |
ResNet152 | 96.9 | 85.38 |
SE-ResNet152 | 97.1 | 86.12 |
SENet154 | 97.5 | 87.26 |
Accuracy/% | IoU/% | |
Cross-Entropy | 97.1 | 85.14 |
Lovasz-Softmax | 97.5 | 87.26 |
Table 2 Comparison of experimental results of different loss functions
Accuracy/% | IoU/% | |
Cross-Entropy | 97.1 | 85.14 |
Lovasz-Softmax | 97.5 | 87.26 |
Accuracy/% | IoU/% | |
U-Net | 93.9 | 74.67 |
基于U-Net方法[ | 94.0 | 79.24 |
PSPNet[ | 93.2 | 75.27 |
USKNet[ | 96.1 | 85.66 |
SeNet154-FPN[ | 97.5 | 87.48 |
SE-Unet(本文方法) | 97.5 | 87.26 |
Table 3 Comparison of experimental results of different models
Accuracy/% | IoU/% | |
U-Net | 93.9 | 74.67 |
基于U-Net方法[ | 94.0 | 79.24 |
PSPNet[ | 93.2 | 75.27 |
USKNet[ | 96.1 | 85.66 |
SeNet154-FPN[ | 97.5 | 87.48 |
SE-Unet(本文方法) | 97.5 | 87.26 |
Params/M | IoU/% | |
SeNet154-FPN | 893.8 | 87.48 |
SE-Unet(本文方法) | 461.5 | 87.26 |
Table 4 Comparison of parameters between SeNet154-FPN and the algorithm in this paper
Params/M | IoU/% | |
SeNet154-FPN | 893.8 | 87.48 |
SE-Unet(本文方法) | 461.5 | 87.26 |
1 |
马梓程, 帅爽, 谢菲, 等. 嵌于扎格罗斯山脉中的"宝石"——盐丘[J]. 中国资源综合利用, 2020, 38 (6): 86-87+123.
|
2 |
徐慧. 什么是地下盐丘?[J]. 资源环境与工程, 2016, 30 (4): 666- 667.
|
3 |
DOI |
4 |
|
5 |
DONG Peng, LIAO Xinwei. An Efficient approach for automatic well-testing interpretation based on surrogate model and deep reinforcement learning[J/OL]. Chinese Journal of Computational Physics, 2023, 40(1): 67-80.
|
6 |
|
7 |
|
8 |
DOI |
9 |
丰超, 潘建国, 李闯, 等. 基于深度神经网络的断层高分辨率识别方法[J/OL]. 地球科学, 48(8): 3044-3052.
|
10 |
DI H, WANG Z, ALREGIB G. Real-time seismic-image interpretation via deconvolutional neural network[C]//2018 SEG International Exposition and Annual Meeting, OnePetro, 2018: 2051-2055.
|
11 |
DI H, WANG Z, ALREGIB G. Deep convolutional neural networks for seismic salt-body delineation[C]//AAPG Annual Convention and Exhibition, 2018: 90323.
|
12 |
SHI Y, WU X, FOMEL S. Automatic salt-body classification using a deep convolutional neural network[M]//SEG Technical Program Expanded Abstracts 2018, Society of Exploration Geophysicists, 2018: 1971-1975.
|
13 |
WALDELAND A U, SOLBERG A. Salt classification using deep learning[C]//79th eage conference and exhibition 2017, European Association of Geoscientists & Engineers, 2017: 1-5.
|
14 |
DOI |
15 |
ZENG Y, JIANG K, CHEN J. Automatic seismic salt interpretation with deep convolutional neural networks[C]//Proceedings of the 20193rd International Conference on Information System and Data Mining, 2019: 16-20.
|
16 |
DOI |
17 |
张玉玺, 刘洋, 张浩然, 等. 基于深度学习的多属性盐丘自动识别方法[J]. 石油地球物理勘探, 2020, 55 (3): 475-483+467.
|
18 |
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-assisted Intervention. Springer, Cham, 2015: 234-241.
|
19 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
|
20 |
BERMAN M, TRIKI A R, BLASCHKO M B. The lovász-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4413-4421.
|
21 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
22 |
卢新瑞, 黄捍东, 李帅, 等. 基于U-Net的盐体识别方法[J]. 计算物理, 2020, 37 (3): 327- 334.
|
23 |
ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2881-2890.
|
24 |
程国建, 刘宁, 万晓龙, 等. 结合SKNet与U-Net的盐体识别方法[J]. 油气地质与采收率, 2022, 29 (1): 62- 68.
|
25 |
LIU B, JING H, LI J, et al. Image segmentation of salt deposits using deep convolutional neural network[C]//2019 IEEE International Conference on Systems, Man and Cybernetics. IEEE, 2019: 3304-3309.
|
[1] | LU Xinrui, HUANG Handong, LI Shuai, YIN Long. Salt-body Classification Method Based on U-Net [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(3): 327-334. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.