Chinese Journal of Computational Physics ›› 2024, Vol. 41 ›› Issue (2): 151-160.DOI: 10.19596/j.cnki.1001-246x.8683
Previous Articles Next Articles
Hexiao FAN(), Xingding CHEN(
)
Received:
2022-12-15
Online:
2024-03-25
Published:
2024-04-03
Contact:
Xingding CHEN
CLC Number:
Hexiao FAN, Xingding CHEN. A Class of Preconditioners for Static Elastic Crack Problems Modeled by Extended Finite Element Method[J]. Chinese Journal of Computational Physics, 2024, 41(2): 151-160.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8683
Fig.3 Schematic representation of two subdomains in the "crack line" domain decomposition (The red line denotes cracks, the blue subdomain denotes the "cracked" domain, the other is the "healthy" domain.)
Fig.4 Schematic representation of subdomains in the "crack tip" domain decomposition(The blue subdomain denotes the "crack tip" domain, the black subdomains denote "regular" domains.)
Fig.6 The geometric XFEM (The red line denotes the crack, nodes in sets SH and SG are denoted by circles and squares, respectively.) (a) the mesh scale is 19×19; (b) the mesh scale is 39×39
Fig.7 Schematic representation of two subdomains in the domain decomposition (The red line denotes cracks, the blue subdomain denotes the "crack tip" domain.)
网格剖分 | CondNPre | CondRAS | CondRMS |
19×19 | 3.08×106 | 7.40×103 | 8.92×103 |
39×39 | 1.62×109 | 3.10×106 | 3.76×106 |
59×59 | 3.05×1010 | 4.22×107 | 5.05×107 |
79×79 | 2.13×1011 | 2.19×108 | 2.66×108 |
99×99 | 1.43×1012 | 6.46×108 | 1.20×109 |
119×119 | 4.83×1012 | 3.10×109 | 3.74×109 |
Table 1 The condition number of the stiffness matrix for the two subdomains preconditioner (δ=2, CondNPre, CondRAS, CondRMS denotes condition number of the stiffness matrix with no preconditioner, with RAS preconditioner and with RMS preconditioner respectively.)
网格剖分 | CondNPre | CondRAS | CondRMS |
19×19 | 3.08×106 | 7.40×103 | 8.92×103 |
39×39 | 1.62×109 | 3.10×106 | 3.76×106 |
59×59 | 3.05×1010 | 4.22×107 | 5.05×107 |
79×79 | 2.13×1011 | 2.19×108 | 2.66×108 |
99×99 | 1.43×1012 | 6.46×108 | 1.20×109 |
119×119 | 4.83×1012 | 3.10×109 | 3.74×109 |
网格剖分 | NonPre | EAS | ERAS | EMS | ERMS |
19×19 | 594 | 8 | 8 | 4 | 4 |
39×39 | 2 437 | 10 | 11 | 5 | 6 |
59×59 | 2 657 | 13 | 14 | 7 | 7 |
79×79 | 3 106 | 15 | 15 | 8 | 8 |
99×99 | 3 651 | 16 | 17 | 8 | 9 |
119×119 | 3 659 | 18 | 18 | 9 | 10 |
Table 2 Number of iterations for two subdomains preconditioner (NonPre denotes no preconditioner, E denotes exact solution in the "regular" domain.)
网格剖分 | NonPre | EAS | ERAS | EMS | ERMS |
19×19 | 594 | 8 | 8 | 4 | 4 |
39×39 | 2 437 | 10 | 11 | 5 | 6 |
59×59 | 2 657 | 13 | 14 | 7 | 7 |
79×79 | 3 106 | 15 | 15 | 8 | 8 |
99×99 | 3 651 | 16 | 17 | 8 | 9 |
119×119 | 3 659 | 18 | 18 | 9 | 10 |
网格剖分 | AS | RAS | MS | RMS |
19×19 | 13 | 11 | 7 | 8 |
39×39 | 19 | 19 | 13 | 14 |
59×59 | 25 | 25 | 19 | 20 |
79×79 | 37 | 38 | 26 | 26 |
99×99 | 55 | 56 | 45 | 47 |
119×119 | 84 | 86 | 57 | 60 |
Table 3 Number of iterations for two subdomains preconditioner (Inexact solution by using ILU decomposition with a 10-3 drop tolerance in the "regular" domain.)
网格剖分 | AS | RAS | MS | RMS |
19×19 | 13 | 11 | 7 | 8 |
39×39 | 19 | 19 | 13 | 14 |
59×59 | 25 | 25 | 19 | 20 |
79×79 | 37 | 38 | 26 | 26 |
99×99 | 55 | 56 | 45 | 47 |
119×119 | 84 | 86 | 57 | 60 |
网格剖分 | NonPre | EAS | ERAS | EMS | ERMS |
39×39 | 2 437 | 31 | 26 | 27 | 24 |
59×59 | 2 657 | 38 | 33 | 34 | 29 |
79×79 | 3 106 | 43 | 37 | 38 | 35 |
99×99 | 3 651 | 51 | 41 | 42 | 38 |
119×119 | 3 659 | 56 | 46 | 48 | 42 |
139×139 | 3 599 | 63 | 50 | 53 | 46 |
159×159 | 3 622 | 69 | 54 | 58 | 49 |
Table 4 Number of iterations for different preconditioners with a 4×4 patition, δ=1
网格剖分 | NonPre | EAS | ERAS | EMS | ERMS |
39×39 | 2 437 | 31 | 26 | 27 | 24 |
59×59 | 2 657 | 38 | 33 | 34 | 29 |
79×79 | 3 106 | 43 | 37 | 38 | 35 |
99×99 | 3 651 | 51 | 41 | 42 | 38 |
119×119 | 3 659 | 56 | 46 | 48 | 42 |
139×139 | 3 599 | 63 | 50 | 53 | 46 |
159×159 | 3 622 | 69 | 54 | 58 | 49 |
网格剖分 | EAS | ERAS | EMS | ERMS |
39×39 | 28 | 22 | 24 | 20 |
59×59 | 30 | 26 | 26 | 24 |
79×79 | 35 | 29 | 30 | 27 |
99×99 | 39 | 33 | 34 | 30 |
119×119 | 42 | 36 | 37 | 34 |
139×139 | 47 | 39 | 39 | 35 |
159×159 | 52 | 41 | 43 | 38 |
Table 5 Number of iterations for different preconditioners with a 4×4 patition, δ=2
网格剖分 | EAS | ERAS | EMS | ERMS |
39×39 | 28 | 22 | 24 | 20 |
59×59 | 30 | 26 | 26 | 24 |
79×79 | 35 | 29 | 30 | 27 |
99×99 | 39 | 33 | 34 | 30 |
119×119 | 42 | 36 | 37 | 34 |
139×139 | 47 | 39 | 39 | 35 |
159×159 | 52 | 41 | 43 | 38 |
网格剖分 | 4×4 | 6×6 | 8×8 | ||||||||
ERAS | EMS | ERMS | ERAS | EMS | ERMS | ERAS | EMS | ERMS | |||
39×39 | 22 | 24 | 20 | 26 | 29 | 23 | 30 | 29 | 29 | ||
59×59 | 26 | 26 | 24 | 32 | 35 | 28 | 37 | 41 | 34 | ||
79×79 | 29 | 30 | 27 | 36 | 41 | 35 | 41 | 47 | 37 | ||
99×99 | 33 | 34 | 30 | 41 | 50 | 38 | 47 | 57 | 42 | ||
119×119 | 36 | 37 | 34 | 44 | 48 | 41 | 53 | 63 | 48 | ||
139×139 | 39 | 39 | 35 | 48 | 55 | 45 | 58 | 71 | 54 | ||
159×159 | 41 | 43 | 38 | 55 | 59 | 51 | 63 | 72 | 58 |
Table 6 Number of iterations for different preconditioners with different patitions (δ=2, exact solutions in "regular" domains.)
网格剖分 | 4×4 | 6×6 | 8×8 | ||||||||
ERAS | EMS | ERMS | ERAS | EMS | ERMS | ERAS | EMS | ERMS | |||
39×39 | 22 | 24 | 20 | 26 | 29 | 23 | 30 | 29 | 29 | ||
59×59 | 26 | 26 | 24 | 32 | 35 | 28 | 37 | 41 | 34 | ||
79×79 | 29 | 30 | 27 | 36 | 41 | 35 | 41 | 47 | 37 | ||
99×99 | 33 | 34 | 30 | 41 | 50 | 38 | 47 | 57 | 42 | ||
119×119 | 36 | 37 | 34 | 44 | 48 | 41 | 53 | 63 | 48 | ||
139×139 | 39 | 39 | 35 | 48 | 55 | 45 | 58 | 71 | 54 | ||
159×159 | 41 | 43 | 38 | 55 | 59 | 51 | 63 | 72 | 58 |
网格剖分 | 4×4 | 6×6 | 8×8 | ||||||||
RAS | MS | RMS | RAS | MS | RMS | RAS | MS | RMS | |||
39×39 | 24 | 26 | 22 | 27 | 29 | 24 | 32 | 29 | 26 | ||
59×59 | 34 | 36 | 30 | 40 | 39 | 34 | 41 | 42 | 38 | ||
79×79 | 47 | 47 | 43 | 49 | 48 | 45 | 50 | 52 | 46 | ||
99×99 | 57 | 59 | 54 | 56 | 62 | 54 | 58 | 64 | 55 | ||
119×119 | 77 | 75 | 72 | 74 | 73 | 69 | 75 | 75 | 70 | ||
139×139 | 85 | 84 | 82 | 86 | 83 | 81 | 86 | 87 | 82 | ||
159×159 | 109 | 109 | 106 | 115 | 117 | 110 | 104 | 107 | 101 |
Table 7 Number of iterations for different preconditioners with different patitions (δ=2, inexact solutions using ILU decomposition with a 10-3 drop tolerance in the "regular" domain.)
网格剖分 | 4×4 | 6×6 | 8×8 | ||||||||
RAS | MS | RMS | RAS | MS | RMS | RAS | MS | RMS | |||
39×39 | 24 | 26 | 22 | 27 | 29 | 24 | 32 | 29 | 26 | ||
59×59 | 34 | 36 | 30 | 40 | 39 | 34 | 41 | 42 | 38 | ||
79×79 | 47 | 47 | 43 | 49 | 48 | 45 | 50 | 52 | 46 | ||
99×99 | 57 | 59 | 54 | 56 | 62 | 54 | 58 | 64 | 55 | ||
119×119 | 77 | 75 | 72 | 74 | 73 | 69 | 75 | 75 | 70 | ||
139×139 | 85 | 84 | 82 | 86 | 83 | 81 | 86 | 87 | 82 | ||
159×159 | 109 | 109 | 106 | 115 | 117 | 110 | 104 | 107 | 101 |
1 | 高英俊, 罗志荣, 邓芊芊, 等. 韧性材料的微裂纹扩展与分叉的晶体相场模拟[J]. 计算物理, 2014, 31 (4): 471- 478. |
2 | 黄朝琴, 姚军, 王月英, 等. 基于离散裂缝模型的裂缝性油藏注水开发数值模拟[J]. 计算物理, 2011, 28 (1): 41- 49. |
3 | 李开泰, 黄艾香, 黄庆怀. 有限元方法及其应用[M]. 北京: 科学出版社, 2005: 1- 160. |
4 |
BELYTSCHKO T , BLACK T . Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45 (5): 601- 620.
DOI |
5 | 庄茁, 柳占立, 成斌斌, 等. 扩展有限单元法[M]. 北京: 清华大学出版社, 2012: 35- 47. |
6 | 杨璞, 牛红攀, 肖世富. 平面应变问题广义有限元法[J]. 计算物理, 2016, 33 (3): 358- 366. |
7 | BABUŠKA I , BANERJEE U . Stable generalized finite element method (SGFEM)[J]. Computer Methods in Applied Mechanics & Engineering, 2011, 201 (1): 91- 111. |
8 | GUPTA V , DUARTE C A , BABUŠKA I , et al. A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics[J]. Computer Methods in Applied Mechanics & Engineering, 2013, 266 (1): 23- 39. |
9 | ZHANG Q H , BABUŠKA I , BANERJEE U . Robustness in stable generalized finite element methods (SGFEM) applied to Poisson problems with crack singularities[J]. Computer Methods in Applied Mechanics & Engineering, 2016, 311 (1): 476- 502. |
10 | 田荣, 文龙飞. 改进型XFEM进展[J]. 计算力学学报, 2016, 33 (4): 469- 477. |
11 |
ZHANG Q H . DOF-gathering stable generalized finite element methods for crack problems[J]. Numerical Methods for Partial Differential Equations, 2020, 36 (6): 1209- 1233.
DOI |
12 |
MENK A , BORDAS S P A . A robust preconditioning technique for the extended finite element method[J]. International Journal for Numerical Methods in Engineering, 2011, 85 (13): 1609- 1632.
DOI |
13 | LANG C , MAKHIJA D , DOOSTAN A , et al. A simple and efficient preconditioning scheme for heaviside enriched XFEM[J]. Computational Mechanics: Solids, Fluids, Fracture Transport Phenomena and Variational Methods, 2014, 54 (5): 1357- 1374. |
14 | GILBERT S . Computational science and engineering[M]. Wellesley, MA: Wellesley-Cambridge Press, 2007: 551- 597. |
15 |
WAISMAN H , BERGER-VERGIAT L . An adaptive domain decomposition preconditioner for crack propagation problems modeled by XFEM[J]. International Journal for Multiscale Computational Engineering, 2013, 11 (6): 633- 654.
DOI |
16 |
BERGER-VERGIAT L , WAISMAN H , HIRIYUR B , et al. Inexact Schwarz-algebraic multigrid preconditioners for crack problems modeled by extended finite element methods[J]. International Journal for Numerical Methods in Engineering, 2012, 90 (3): 311- 328.
DOI |
17 | TIAN R, WEN L F. An extra dof-free and well-conditioned XFEM[C]//Proceedings of the 5th International Conference on Computational Methods, 2014: 784-793. |
18 |
TIAN W , HUANG J J , JIANG Y , et al. A parallel scalable domain decomposition preconditioner for elastic crack simulation using XFEM[J]. International Journal for Numerical Methods in Engineering, 2022, 123 (15): 3393- 3417.
DOI |
19 |
GUPTA V , DUARTE C A , BABUŠKA I , et al. Stable GFEM (SGFEM): Improved conditioning and accuracy of GFEM/XFEM for three-dimensional fracture mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 289, 355- 386.
DOI |
20 |
GUPTA V , DUARTE C A , BABUŠKA I , et al. A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 266, 23- 39.
DOI |
21 | SAAD Y . Iterative methods for sparse linear systems[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2000: 157- 218. |
22 |
CAI X C , CHEN X D . Effective two-level domain decomposition preconditioners for elastic crack problems modeled by extended finite element method[J]. Communications in Computational Physics, 2020, 28 (4): 1561- 1584.
DOI |
[1] | YIN Liang, YANG Chao, MA Shizhuang. Parallel Numerical Simulations of Thermal Convection in the Earth's Outer Core Based on Domain Decomposition and Multigrid [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(1): 1-14. |
[2] | ZHANG Shouhui, LIANG Dong. A Strang-type Alternating Segment Domain Decomposition Method for Two-dimensional Parabolic Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(4): 413-428. |
[3] | TIAN Wei, REN Xincheng. Method of Moment for Electromagnetic Scattering from Ground Covered with Snow [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(2): 205-211. |
[4] | LI Gang, ZHANG Baoyin, DENG Li, SHANGGUAN Danhua, LI Rui, MA Yan, FU Yuanguang, HU Xiaoli. Pseudo-Random Numbers for Identical Results on Varying Numbers of Processors in Domain Decomposed Particle Monte Carlo Simulations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(1): 67-72. |
[5] | YE Zhenbao, ZHOU Haijing. High-order Discontinuous Galerkin Time-Domain Finite-Element Method for Three-dimensional Cavities [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 32(4): 449-454. |
[6] | CHEN Xue, SUN Chuang, XIA Xinlin. Stray Light Analysis Based on Domain Decomposition and Staged Ray Splitting [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 29(6): 876-880. |
[7] | WEI Junxia, YUAN Guangwei, YANG Shulin, SHEN Weidong. A Parallel Algorithm with Interface Prediction and Correction for Time-dependent Transport Equation in 2D Cylindrical Geometry [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 29(2): 198-204. |
[8] | SHENG Zhiming, CUI Xia, LIU Xingping. Domain Decomposition Algorithm witlI Multi-step Evaluation for Diffusion Equation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 28(6): 825-830. |
[9] | BAI Xiaoyong, HE Yingbo, CHEN Chengjun. A Parallel Contact Detection Algorithm for Explicit Finite Element Analysis [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 28(3): 341-346. |
[10] | SHANG Yueqiang, HE Yinnian. Parallel Finite Element Algorithms Based on Fully Overlapping Domain Decomposition for Time-dependent Navier-Stokes Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 28(2): 181-187. |
[11] | XIAN Yongli, DU Hongwei, WANG Congzheng, PENG Hu. A Fast Algorithm for Nonlinear Finite Sound Beams Based on Spatial-domain Decomposition [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 28(1): 57-65. |
[12] | WEI Junxia, YANG Shulin, FU Lianxiang. Parallel Domain Decomposition for Neutron Transport Equations with 2-D Cylindrical Geometry [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 27(1): 1-7. |
[13] | LIU Peng. Direct Domain Decomposition Method for Bistatic Scattering from 3-D Rough Surfaces [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 27(1): 73-81. |
[14] | FAN Xuanhua, WU Ruian, HAO Zhiming, HE Yingbo. Parallel Computing of Clamp Structure in Tahoe Frame [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 26(5): 699-702. |
[15] | YUAN Yirang. Recent Progress in Numerical Methods for Semiconductor Devices [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 26(3): 317-324. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.