Chinese Journal of Computational Physics ›› 2024, Vol. 41 ›› Issue (3): 316-324.DOI: 10.19596/j.cnki.1001-246x.8715
Previous Articles Next Articles
Received:
2023-03-01
Online:
2024-05-25
Published:
2024-05-25
CLC Number:
Chunyu HU. Lattice Boltzmann Model for Simulating Heat-fluid-solid Interaction in Wellbore[J]. Chinese Journal of Computational Physics, 2024, 41(3): 316-324.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8715
λs/λf | 本文 | Ref.[ | Ref.[ | Ref.[ |
1 | 1.224 | 1.233 | 1.193 | 1.250 |
10 | 2.048 | 2.030 | 2.066 | 2.051 |
100 | 2.345 | 2.313 | 2.394 | 2.336 |
Table 1 Comparison of the Nusselt numbers on the left
λs/λf | 本文 | Ref.[ | Ref.[ | Ref.[ |
1 | 1.224 | 1.233 | 1.193 | 1.250 |
10 | 2.048 | 2.030 | 2.066 | 2.051 |
100 | 2.345 | 2.313 | 2.394 | 2.336 |
油井深度/m | 套管直径(外径)/mm | 套管内径/mm | 油管直径/mm | 油管内径/mm | 水泥环厚度/mm | Ra |
1 000 | 177.8 | 159.4 | 73 | 62 | 32 | 103~109 |
油井日产液量 | 含水率/% | 井底温度/℃ | 井口温度/℃ | 原油密度/(kg·m-3) | 原油运动黏度/ (m2·s-1) | Re |
1~100 | 0.1~99 | 40~60 | 20~30 | 800~1 000 | 50~10 × 103 | 0.1~478 |
Table 2 Typical range of oilfield production parameters and criterion number
油井深度/m | 套管直径(外径)/mm | 套管内径/mm | 油管直径/mm | 油管内径/mm | 水泥环厚度/mm | Ra |
1 000 | 177.8 | 159.4 | 73 | 62 | 32 | 103~109 |
油井日产液量 | 含水率/% | 井底温度/℃ | 井口温度/℃ | 原油密度/(kg·m-3) | 原油运动黏度/ (m2·s-1) | Re |
1~100 | 0.1~99 | 40~60 | 20~30 | 800~1 000 | 50~10 × 103 | 0.1~478 |
Pr | Ra | Re | 下边界温度 | 上边界温度 | 径向网格数 |
1.0, 10, 100 | 103, 104, 105 | 10, 100, 1 000 | 1.0 | 0.0 | 1 000 |
流体、环空导热系数 | 油管、套管导热系数 | 水泥环导热系数 | 地层导热系数 | 流体粘度 | 轴向网格数 |
1.0 | 319 | 4.42 | 15 | 0.01 | 1 000 |
Table 3 Criterion number and model parameters
Pr | Ra | Re | 下边界温度 | 上边界温度 | 径向网格数 |
1.0, 10, 100 | 103, 104, 105 | 10, 100, 1 000 | 1.0 | 0.0 | 1 000 |
流体、环空导热系数 | 油管、套管导热系数 | 水泥环导热系数 | 地层导热系数 | 流体粘度 | 轴向网格数 |
1.0 | 319 | 4.42 | 15 | 0.01 | 1 000 |
1 |
RAMEY H J . Wellbore heat transmission[J]. Journal of Petroleum Technology, 1962, 14 (4): 427- 435.
DOI |
2 |
TANG Hewei , XU Boyue , HASAN A R , et al. Modeling wellbore heat exchangers: Fully numerical to fully analytical solutions[J]. Renewable Energy, 2019, 133, 1124- 1135.
DOI |
3 |
GUO Jianchun , LIU Zhuang , GOU Bo , et al. Study of wellbore heat transfer considering fluid rheological effects in deep well acidizing[J]. Journal of Petroleum Science and Engineering, 2020, 191, 107171.
DOI |
4 |
YANG Mou , LUO Dayu , CHEN Yuanhang , et al. Establishing a practical method to accurately determine and manage wellbore thermal behavior in high-temperature drilling[J]. Applied Energy, 2019, 238, 1471- 1483.
DOI |
5 |
ROOSTAIE M , LEONENKO Y . Analytical investigation of gas production from methane hydrates and the associated heat and mass transfer upon thermal stimulation employing a coaxial wellbore[J]. Energy Conversion and Management, 2020, 209, 112616.
DOI |
6 |
JAVADZADEGAN A , JOSHAGHANI M , MOSHFEGH A , et al. Accurate meso-scale simulation of mixed convective heat transfer in a porous media for a vented square with hot elliptic obstacle: An LBM approach[J]. Physica A: Statistical Mechanics and its Applications, 2020, 537, 122439.
DOI |
7 |
KRAVETS B , ROSEMANN T , REINECKE S R , et al. A new drag force and heat transfer correlation derived from direct numerical LBM-simulations of flown through particle packings[J]. Powder Technology, 2019, 345, 438- 456.
DOI |
8 |
ZHANG Ying , HUANG Yichen , XU Meng , et al. Flow and heat transfer simulation in a wall-driven porous cavity with internal heat source by multiple-relaxation time lattice Boltzmann method (MRT-LBM)[J]. Applied Thermal Engineering, 2020, 173, 115209.
DOI |
9 | 彭浩, 单鸣雷, 朱昌平, 等. LBM伪势MRT三维模型GPU并行计算的性能优化[J]. 计算物理, 2018, 35 (5): 554- 562. |
10 |
孙金丛, 杜鹏, 李培生, 等. 基于LBM的部分热活跃边界下多孔腔体内自然对流换热[J]. 计算物理, 2017, 34 (5): 583- 592.
DOI |
11 |
董志强, 李维仲. 不同精度格式的格子Boltzmann热模型的传热分析[J]. 计算物理, 2009, 26 (1): 94- 100.
DOI |
12 |
喻西崇, 刘瑜, 宋永臣, 等. 基于LBM方法的天然气水合物沉积物中多相流动规律研究[J]. 中国石油大学学报(自然科学版), 2011, 35 (5): 99- 103.
DOI |
13 |
吴杰, 徐爽, 赵宁. 一种模拟大密度比多相流的混合算法[J]. 计算物理, 2013, 30 (1): 1- 10.
DOI |
14 |
SARITHA G , BANERJEE R . Development and application of a high density ratio pseudopotential based two-phase LBM solver to study cavitating bubble dynamics in pressure driven channel flow at low Reynolds number[J]. European Journal of Mechanics-B/Fluids, 2019, 75, 83- 96.
DOI |
15 |
SITOMPUL Y P , AOKI T . A filtered cumulant lattice Boltzmann method for violent two-phase flows[J]. Journal of Computational Physics, 2019, 390, 93- 120.
DOI |
16 |
WANG Kun , SUN W C . An updated Lagrangian LBM-DEM-FEM coupling model for dual-permeability fissured porous media with embedded discontinuities[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 344, 276- 305.
DOI |
17 |
WANG Yingda , CHUNG T , ARMSTRONG R T , et al. ML-LBM: Predicting and accelerating steady state flow simulation in porous media with convolutional neural networks[J]. Transport in Porous Media, 2021, 138 (1): 49- 75.
DOI |
18 |
SHAN Xiaowen . Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method[J]. Physical Review E, 1997, 55 (3): 2780- 2788.
DOI |
19 | 郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京: 科学出版社, 2009. |
20 |
KARANI H , HUBER C . Lattice Boltzmann formulation for conjugate heat transfer in heterogeneous media[J]. Physical Review E, 2015, 91 (2): 023304.
DOI |
21 |
HU Yang , LI Decai , SHU Shi , et al. Full Eulerian lattice Boltzmann model for conjugate heat transfer[J]. Physical Review E, 2015, 92 (6): 063305.
DOI |
22 |
LU Jinhua , LEI Haiyan , DAI Chuanshan . A lattice Boltzmann algorithm for simulating conjugate heat transfer through virtual heat capacity correction[J]. International Journal of Thermal Sciences, 2017, 116, 22- 31.
DOI |
23 |
GUO Zhaoli , ZHENG Chuguang , SHI Baochang . Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method[J]. Chinese Physics, 2002, 11 (4): 366.
DOI |
24 | 何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京: 科学出版社, 2009. |
25 |
MERRIKH A A , LAGE J L . Natural convection in an enclosure with disconnected and conducting solid blocks[J]. International Journal of Heat and Mass Transfer, 2005, 48 (7): 1361- 1372.
DOI |
26 | RAJI A , HASNAOUI M , NAÏMI M , et al. Effect of the subdivision of an obstacle on the natural convection heat transfer in a square cavity[J]. Computers & Fluids, 2012, 68, 1- 15. |
[1] | Xiwen WANG, Xuemin YE, Dan LI, Chunxi LI. Three-dimensional Lattice Boltzmann Method Simulation of A Large Droplet Impacting A Small Sphere with Different Wettability [J]. Chinese Journal of Computational Physics, 2024, 41(2): 172-181. |
[2] | Ming GAO, Lu CHEN, Jia LIANG, Dongmin WANG, Yugang ZHAO, Lixin ZHANG, Quan SUN, Haojie LI. LBM Simulation of Two Droplets Merging and Bouncing at the Top of an Inclined Plane with a Wetting Gradient [J]. Chinese Journal of Computational Physics, 2023, 40(3): 333-342. |
[3] | Shuting FENG, Houping DAI, Tongzheng SONG. Lattice Boltzmann Method for Two-dimensional Fractional Reaction-Diffusion Equations [J]. Chinese Journal of Computational Physics, 2022, 39(6): 666-676. |
[4] | Liubin ZHANG, Yanguang SHAN, Zhicheng RONG. Single Bubble Dynamics in Pool Boiling Under Uniform Electric Field: LBM Simulation [J]. Chinese Journal of Computational Physics, 2022, 39(5): 537-548. |
[5] | Jiaxin LIU, Lin ZHENG, Beihao ZHANG. Entropy Generation in Double-diffusive Natural Convection in a Square Porous Enclosure: Lattice Boltzmann Method [J]. Chinese Journal of Computational Physics, 2022, 39(5): 549-563. |
[6] | Pin-liang LIN, Huan-huan FENG, Yu-hong DONG. Analysis of Flow Field Around a Cylinder with Porous Media Layer [J]. Chinese Journal of Computational Physics, 2022, 39(4): 418-426. |
[7] | Qiao-ling ZHANG, He-fang JING. Flow Patterns in Three-dimensional Lid-driven Cavities with Curved Boundary: MRT-LBM Study [J]. Chinese Journal of Computational Physics, 2022, 39(4): 427-439. |
[8] | Lu CHEN, Ming GAO, Jia LIANG, Dongmin WANG, Yugang ZHAO, Lixin ZHANG. Droplet Upward Movement on an Inclined Surface Under Wetting Gradient: Lattice Boltzmann Simulation [J]. Chinese Journal of Computational Physics, 2021, 38(6): 672-682. |
[9] | Xuedan WEI, Houping DAI, Mengjun LI, Zhoushun ZHENG. Lattice Boltzmann Method for One-dimensional Riesz Spatial Fractional Convection-Diffusion Equations [J]. Chinese Journal of Computational Physics, 2021, 38(6): 683-692. |
[10] | Liu YANG, Jingwei GAO, Yuanhan ZHENG, Xiaomei LI, Yunfan ZHANG. Numerical Simulation of Imbibition Law of Heterogeneous Sandy Conglomerate: Lattice Boltzmann Method [J]. Chinese Journal of Computational Physics, 2021, 38(5): 534-542. |
[11] | Jiangtao ZHENG, Ninghong JIA, Huifang HU, Yong YANG, Yang JU, Moran WANG. Study on Liquid-Liquid Spontaneous Imbibition Dynamics in Bifurcated Channels [J]. Chinese Journal of Computational Physics, 2021, 38(5): 543-554. |
[12] | Qin LOU, Sheng TANG, Haoyuan WANG. Numerical Simulation of Bubble Dynamics in Porous Media with a Lattice Boltzmann Large Density Ratio Model [J]. Chinese Journal of Computational Physics, 2021, 38(3): 289-300. |
[13] | Jia LIANG, Ming GAO, Lu CHEN, Dongmin WANG, Lixin ZHANG. Lattice Boltzmann Study of a Droplet Impinging on a Stationary Droplet on a Fixed Wall Surface with Different Wettability [J]. Chinese Journal of Computational Physics, 2021, 38(3): 313-323. |
[14] | YUAN Junjie, YE Xin, SHAN Yanguang. Natural Convection in Triangular Cavity Filled with Nanofluid: Lattice Boltzmann Simulation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 38(1): 57-68. |
[15] | FENG Lingling, XU Hongtao, WANG Di, LUO Zhuqing. Lattice Boltzmann Simulation of Formaldehyde Adsorption by Activated Carbon [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 38(1): 69-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.