1 |
XING Yulong , SHU Chiwang . High order finite difference WENO schemes with the exact conservation property for the shallow water equations[J]. Journal of Computational Physics, 2005, 208 (1): 206- 227.
DOI
|
2 |
NOELLE S , XING Yulong , SHU Chiwang . High-order well-balanced finite volume WENO schemes for shallow water equation with moving water[J]. Journal of Computational Physics, 2007, 226 (1): 29- 58.
DOI
|
3 |
KESSERWANI G , LIANG Qiuhua . A conservative high-order discontinuous Galerkin method for the shallow water equations with arbitrary topography[J]. International Journal for Numerical Methods in Engineering, 2011, 86 (1): 47- 69.
DOI
|
4 |
BERMUDEZ A , VAZQUEZ M E . Upwind methods for hyperbolic conservation laws with source terms[J]. Computers & Fluids, 1994, 23 (8): 1049- 1071.
|
5 |
LEVEQUE R J . Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm[J]. Journal of Computational Physics, 1998, 146 (1): 346- 365.
DOI
|
6 |
AUDUSSE E , BOUCHUT F , BRISTEAU M O . A fast and stable well-balanced scheme with hydrostatic Reconstruction for shallow water flows[J]. SIAM Journal on Scientific Computing, 2004, 25 (6): 2050- 2065.
DOI
|
7 |
NOELLE S , PANKRATZ N , PUPPO G , et al. Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows[J]. Journal of Computational Physics, 2006, 213 (2): 474- 499.
DOI
|
8 |
LI Jiaojiao , LI Gang , QIAN Shouguo , et al. High-order well-balanced finite volume WENO schemes with conservative variables decomposition for shallow water equations[J]. Advances in Applied Mathematics and Mechanics, 2021, 13 (4): 827- 849.
DOI
|
9 |
ARAKAWA A . Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part Ⅰ[J]. Journal of Computational Physics, 1966, 1 (1): 119- 143.
DOI
|
10 |
ARAKAWA A , LAMB V R . Computational design of the basic dynamical process of the UCLA general circulation model[J]. Methods in Computational Physics: Advances in Research and Applications, 1977, 17, 173- 265.
|
11 |
ARAKAWA A , LAMB V R . A potential enstropy and energy conserving scheme for the shallow water equations[J]. Monthly Weather Review, 1981, 109 (1): 18- 36.
DOI
|
12 |
TADMOR E . The numerical viscosity of entropy stable schemes for systems of conservation laws. Ⅰ[J]. Mathematics of Computation, 1987, 49 (179): 91- 103.
DOI
|
13 |
FJORDHOLM U S. Structure preserving finite volume methods for the shallow water equations[D]. Oslo: University of Oslo, 2009.
|
14 |
建芒芒, 郑素佩, 封建湖, 等. 浅水波方程熵稳定格式的保平衡性[J]. 数学物理学报, 2023, 43 (2): 491- 504.
|
15 |
郑素佩, 徐霞, 封建湖, 等. 高阶保号熵稳定格式[J]. 数学物理学报, 2021, 41 (5): 1296- 1310.
DOI
|
16 |
GOTTLIEB S , SHU Chiwang , TADMOR E . Strong stability-preserving high-order time discretization methods[J]. SIAM Rieview, 2001, 43 (1): 89- 112.
DOI
|
17 |
FJORDHOLM U S , MISHRA S , TADMOR E . Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography[J]. Journal of Computational Physics, 2011, 230 (14): 5587- 5609.
DOI
|
18 |
FJORDHOLM U S , MISHRA S , TADMOR E . Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation Laws[J]. SIAM Journal on Numerical Analysis, 2012, 50 (2): 544- 573.
DOI
|
19 |
BISWAS B , DUBEY R K . Low dissipative entropy stable schemes using third order WENO and TVD reconstructions[J]. Advances in Computational Mathematics, 2018, 44 (4): 1153- 1181.
DOI
|