Chinese Journal of Computational Physics ›› 2024, Vol. 41 ›› Issue (5): 670-679.DOI: 10.19596/j.cnki.1001-246x.8761
• Research Reports • Previous Articles Next Articles
Zhijie WEI1,2(), Yuxiang MO1,2, Rongmei LIN1,2, Xiaoke LAN1,2, Guoning TANG1,2,*(
)
Received:
2023-05-22
Online:
2024-09-25
Published:
2024-09-14
Contact:
Guoning TANG
CLC Number:
Zhijie WEI, Yuxiang MO, Rongmei LIN, Xiaoke LAN, Guoning TANG. Study on Reentrant Arrhythmia Caused by Weak Coupling[J]. Chinese Journal of Computational Physics, 2024, 41(5): 670-679.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8761
Fig.2 Evolution of membrane potential of cardiomyocytes on both sides of the boundary between weak and strong coupling regions at different coupling intensities (a) D1=0.000 2 cm2 ·ms-1; (b) D1=0.000 5 cm2 ·ms-1
Fig.3 Spatiotemporal patterns of membrane potential of cardiomyocytes in (a) the first row and (b) the second row at Dx=0.000 5 cm2 ·ms-1 and Dy=0.000 105 cm2 ·ms-1
Fig.4 Evolution of cardiomyocytes membrane potential with time at different sites of Dx=0.000 5 cm2 ·ms-1 and Dy=0.000 105 cm2 ·ms-1 (a) i=150; (b) i=75
Fig.5 Patterns of membrane potential at different time points with Dy=0.000 5 cm2 ·ms-1 and Dy=0.000 110 cm2 ·ms-1 (a) t=80 ms; (b) t=145 ms; (c) t=155 ms; (d) t=180 ms; (e) t=200 ms; (f) t=210 ms; (g) t =220 ms; (h) t=250 ms; (i) t=340 ms; (j) t=380 ms; (k) t=420 ms; (l) t=500 ms; (m) t=509 ms; (n) t=540 ms; (o) t=610 ms; (p) t=700 ms
Fig.6 Patterns of membrane potential at different time points with D2=0.000 25 cm2 ·ms-1 (The region enclosed by the gray dotted line in Fig.(a) is the normal coupling region. The rest is the weak coupling region.) (a) t=100 ms; (b) t=200 ms; (c) t=240 ms; (d) t=300 ms; (e) t=440 ms; (f) t=520 ms; (g) t=570 ms; (h) t=750 ms; (i) t=800 ms
Fig.7 Patterns of membrane potential in the first layer myocardial tissue at different time points (The gray-white dotted ine and the dotted line box display the interlayer coupling regions, corresponding to interlayer coupling intensities are D12L=0.000 4 cm2 ·ms-1 and D12R=0.001 cm2 ·ms-1, respectively.) (a) t=38 ms; (b) t=98 ms; (c) t=156 ms; (d) t=200 ms; (e) t=230 ms; (f) t=263 ms; (g) t=340 ms; (h) t=400 ms; (i) t=510 ms
Fig.8 Patterns of membrane potential in the second layer myocardial tissue at different time points (The gray-white dotted line and the dotted line box display the interlayer coupling regions, corresponding to interlayer coupling intensities are D12L=0.0004 cm2 ·ms-1 and D12R=0.001 cm2 ·ms-1, respectively.) (a) t=38 ms; (b) t=98 ms; (c) t=156 ms; (d) t=200 ms; (e) t=230 ms; (f) t=263 ms; (g) t =340 ms; (h) t=400 ms; (i) t=510 ms
1 |
XIE Y F , SATO D , GARFINKEL A , et al. So little source, so much sink: Requirements for afterdepolarizations to propagate in tissue[J]. Biophysical Journal, 2010, 99 (5): 1408- 1415.
DOI |
2 |
ANTZELEVITCH C . Basic mechanisms of reentrant arrhythmias[J]. Current Opinion in Cardiology, 2001, 16 (1): 1- 7.
DOI |
3 |
KRISHNAN S C , ANTZELEVITCH C . Flecainide-induced arrhythmia in canine ventricular epicardium. Phase 2 reentry?[J]. Circulation, 1993, 87 (2): 562- 572.
DOI |
4 |
HOLMQVIST F , KESEK M , ENGLUND A , et al. A decade of catheter ablation of cardiac arrhythmias in Sweden: Ablation practices and outcomes[J]. European Heart Journal, 2019, 40 (10): 820- 830.
DOI |
5 |
RAZMINIA M , WILLOUGHBY M C , DEMO H , et al. Fluoroless catheter ablation of cardiac arrhythmias: A 5-Year experience[J]. Pacing and Clinical Electrophysiology: PACE, 2017, 40 (4): 425- 433.
DOI |
6 |
MARROUCHE N F , BRACHMANN J , ANDRESEN D , et al. Catheter ablation for atrial fibrillation with heart failure[J]. The New England Journal of Medicine, 2018, 378 (5): 417- 427.
DOI |
7 | 白婧, 黄志精, 唐国宁. 用运动控制器来终止心律失常[J]. 计算物理, 2021, 38 (3): 352- 360. |
8 |
PERTSOV A M , DAVIDENKO J M , SALOMONSZ R , et al. Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle[J]. Circulation Research, 1993, 72 (3): 631- 650.
DOI |
9 |
DAVIDENKO J M . Spiral wave activity: A possible common mechanism for polymorphic and monomorphic ventricular tachycardias[J]. Journal of Cardiovascular Electrophysiology, 1993, 4 (6): 730- 746.
DOI |
10 | 关富荣, 李成乾, 邓敏艺. 激发介质相对不应态对螺旋波动力学行为的影响[J]. 计算物理, 2021, 38 (6): 749- 756. |
11 |
DAVIDENKO J M , PERTSOV A V , SALOMONSZ R , et al. Stationary and drifting spiral waves of excitation in isolated cardiac muscle[J]. Nature, 1992, 355 (6358): 349- 351.
DOI |
12 |
ZIMIK S , PANDIT R . Reentry via high-frequency pacing in a mathematical model for human-ventricular cardiac tissue with a localized fibrotic region[J]. Scientific Reports, 2017, 7, 15350.
DOI |
13 | ZEMLIN CW , PERTSOV AM . Bradycardic onset of spiral wave re-entry: Structural substrates[J]. Europace, 2017, 9 (suppl 6): vi59- vi63. |
14 |
HUFFAKER R , LAMP S T , WEISS J N , et al. Intracellular calcium cycling, early afterdepolarizations, and reentry in simulated long QT syndrome[J]. Heart Rhythm, 2004, 1 (4): 441- 448.
DOI |
15 |
WEISS J N , GARFINKEL A , KARAGUEUZIAN H S , et al. Early afterdepolarizations and cardiac arrhythmias[J]. Heart Rhythm, 2010, 7 (12): 1891- 1899.
DOI |
16 | BERNUS O , ZEMLIN C W , ZARITSKY R M , et al. Alternating conduction in the ischaemic border zone as precursor of reentrant arrhythmias: A simulation study[J]. Europace, 2005, 7 Suppl 2, 93- 104. |
17 |
CLAYTON RH , TAGGART P . Regional differences in APD restitution can initiate wavebreak and re-entry in cardiac tissue: A computational study[J]. Biomedical Engineering Online, 2005, 4, 54- 67.
DOI |
18 |
NAKAGAMI T , TANAKA H , DAI Ping , et al. Generation of reentrant arrhythmias by dominant-negative inhibition of connexin43 in rat cultured myocyte monolayers[J]. Cardiovascular Research, 2008, 79 (1): 70- 79.
DOI |
19 |
ZIPES D P , WELLENS H J J . Sudden cardiac death[J]. Circulation, 1998, 98, 2334- 21351.
DOI |
20 |
DE GROOT JR , CORONEL R . Acute ischemia-induced gap junctional uncoupling and arrhythmogenesis[J]. Cardiovascular Research, 2004, 62 (2): 323- 334.
DOI |
21 |
KLÉBER A G , RIEGGER C B , JANSE M J . Electrical uncoupling and increase of extracellular resistance after induction of ischemia in isolated, arterially perfused rabbit papillary muscle[J]. Circulation Research, 1987, 61 (2): 271- 279.
DOI |
22 | MA J . Biophysical neurons, energy, and synapse controllability: a review[J]. Journal of Zhejiang University-Science A, 2022, (24): 109- 129. |
23 | 黄志精, 白婧, 唐国宁. 单向耦合神经元网络中螺旋波的自发形成机制[J]. 计算物理, 2020, 37 (5): 612- 622. |
24 |
LUO C H , RUDY Y . A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction[J]. Circulation Research, 1991, 68, 1501- 1526.
DOI |
25 | 李倩昀, 白婧, 唐国宁. 两层老化心肌组织中螺旋波和时空混沌的控制[J]. 物理学报, 2021, 70 (9): 349- 359. |
[1] | Guowei WANG, Yan FU. Stochastic Boundary-induced Spatiotemporal Pattern Transformation in Izhikevich Neuronal Networks [J]. Chinese Journal of Computational Physics, 2023, 40(5): 622-632. |
[2] | Chengqian LI, Furong GUAN, Minyi DENG. Effects of Conduction Block and Reentry on Evolution of Spiral Waves [J]. Chinese Journal of Computational Physics, 2023, 40(1): 117-126. |
[3] | Shaoying CHEN, Xueli WANG, Zhimei GAO, Guoyong YUAN. Dynamics of Spiral Waves in Complex Ginzburg-Landau Systems Subjected to Feedback Derived from an Annular Domain [J]. Chinese Journal of Computational Physics, 2022, 39(1): 118-126. |
[4] | Furong GUAN, Chengqian LI, Minyi DENG. Spiral Wave Dynamics of Excited Medium: Effect of Relative Refractory [J]. Chinese Journal of Computational Physics, 2021, 38(6): 749-756. |
[5] | Jing BAI, Zhijing HUANG, Guoning TANG. Terminating Arrhythmia by Using Motion Controller [J]. Chinese Journal of Computational Physics, 2021, 38(3): 352-360. |
[6] | HUANG Zhijing, BAI Jing, TANG Guoning. Mechanism of Spontaneous Formation of Spiral Wave in Neuronal Network with Unidirectional Coupling [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(5): 612-622. |
[7] | ZHANG Xueliang, TAN Huili, TANG Guoning, DENG Minyi. Mechanical Deformation of Myocardial Tissue with Cellular Automaton [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(3): 294-302. |
[8] | YANG Cuiyun, LIU Haiying, TANG Guoning. Simulation on Control of Spiral Wave by Two-stage Pulse Force [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 31(5): 625-630. |
[9] | CHEN Xiqiong, DENG Minyi, TANG Guoning, KONG Lingjiang. Effect of Conduction Delay on Dynamics of Spiral Waves [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 30(4): 620-626. |
[10] | CHEN Shaoying, YUAN Guoyong, WU Gang, CUI Qianqian, FAN Hongling. Effect of Lévy Noise and Periodic Force on Dynamics of Spiral Waves [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 29(4): 620-626. |
[11] | LI Guangzhao, TANG Guoning. Numerical Study on Depolarization in Dynamics of Spiral Waves in Excitable Media [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 28(4): 626-632. |
[12] | ZHONG Min, TANG Guoning. Suppression of Spiral Waves and Spatiotemporal Chaos in Cardiac Tissues with Controll of Calcium and Potassium Ionic Currents [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 28(1): 119-124. |
[13] | YAN Guang-wu. Lattice Boltzmann Model for Nonlinear Chemical Waves in the Excitable Media [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 20(4): 356-358. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.