1 |
RAYLEIGH L . Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density[J]. Proceedings of the London Mathematical Society, 1882, S1-14 (1): 170- 177.
DOI
|
2 |
TAYLOR G I . The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Ⅰ[J]. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 1950, 201, 192- 196.
|
3 |
RICHTMYER R D . Taylor instability in shock acceleration of compressible fluids[J]. Communications on Pure and Applied Mathematics, 1960, 13 (2): 297- 319.
DOI
|
4 |
MESHKOV E E . Instability of the interface of two gases accelerated by a shock wave[J]. Fluid Dynamics, 1969, 4, 101- 104.
|
5 |
THOMSON W . XLVI. Hydrokinetic solutions and observations[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1871, 42 (281): 362- 377.
DOI
|
6 |
HELMHOLTZ P . XLIII. On discontinuous movements of fluids[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1868, 36 (224): 337- 346.
|
7 |
FLEISCHMANN N , ADAMI S , ADAMS N A . Numerical symmetry-preserving techniques for low-dissipation shock-capturing schemes[J]. Computers & Fluids, 2019, 189, 94- 107.
|
8 |
MILES A R , BLUE B , EDWARDS M J , et al. Transition to turbulence and effect of initial conditions on three-dimensional compressible mixing in planar blast-wave-driven systems[J]. Physics of Plasmas, 2005, 12 (5): 056317.
DOI
|
9 |
ZHOU Y , CLARK T T , CLARK D S , et al. Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities[J]. Physics of Plasmas, 2019, 26 (8): 080901.
DOI
|
10 |
MORGAN B E , BLACK W J . Parametric investigation of the transition to turbulence in Rayleigh-Taylor mixing[J]. Physica D. Nonlinear Phenomena, 2020, 402 (132223)
|
11 |
LOMBARDINI M , PULLIN D I , MEIRON D I . Transition to turbulence in shock-driven mixing: A mach number study[J]. Journal of Fluid Mechanics, 2012, 690, 203- 226.
DOI
|
12 |
COOK A W , DIMOTAKIS P E . Transition stages of Rayleigh-Taylor instability between miscible fluids[J]. Journal of Fluid Mechanics, 2001, 443, 69- 99.
DOI
|
13 |
DIMOTAKIS P E . The mixing transition in turbulent flows[J]. Journal of Fluid Mechanics, 2000, 409, 69- 98.
DOI
|
14 |
WEI Tie , LIVESCU D . Late-time quadratic growth in single-mode Rayleigh-Taylor instability[J]. Physical Review E, 2012, 86, 046405.
DOI
|
15 |
GONCHAROV V N . Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary atwood numbers[J]. Physical Review Letters, 2002, 88, 134502.
DOI
|
16 |
LIU Changwen , ZHANG Yousheng , XIAO Zuoli . A unified theoretical model for spatiotemporal development of Rayleigh-Taylor and Richtmyer-Meshkov fingers[J]. Journal of Fluid Mechanics, 2023, 954, A13.
DOI
|
17 |
GUO Wenxuan , ZHANG Qiang . Quantitative theory for spikes and bubbles in the Richtmyer-Meshkov instability at arbitrary density ratios in three dimensions[J]. Physics of Fluids, 2022, 34 (7): 072115.
DOI
|
18 |
ZHANG Qiang , GUO Wenxuan . Universality of finger growth in two-dimensional Rayleigh-Taylor and Richtmyer-Meshkov instabilities with all density ratios[J]. Journal of Fluid Mechanics, 2016, 786, 47- 61.
DOI
|
19 |
DIMONTE G , YOUNGS D L , DIMITS A , et al. A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: The alpha-group collaboration[J]. Physics of Fluids, 2004, 16 (5): 1668- 1693.
DOI
|
20 |
DIMONTE G . Dependence of turbulent Rayleigh-Taylor instability on initial perturbations[J]. Physical Review E, 2004, 69, 056305.
DOI
|
21 |
DIMONTE G , SCHNEIDER M . Density ratio dependence of Rayleigh-Taylor mixing for sustained and impulsive acceleration histories[J]. Physics of Fluids, 2000, 12 (2): 304- 321.
DOI
|
22 |
AURE R , JACOBS J W . Particle image velocimetry study of the shock-induced single mode Richtmyer-Meshkov instability[J]. Shock Waves, 2008, 18, 161- 167.
DOI
|
23 |
GUO Xu , CONG Zhouyang , SI Ting , et al. Shock-tube studies of single- and quasi-single-mode perturbation growth in Richtmyer-Meshkov flows with reshock[J]. Journal of Fluid Mechanics, 2022, 941, A65.
DOI
|
24 |
LIANG Yu , ZHAI Zhigang , DING Juchun , et al. Richtmyer-Meshkov instability on a quasi-single-mode interface[J]. Journal of Fluid Mechanics, 2019, 872, 729- 751.
DOI
|
25 |
MANSOOR M M , DALTON S M , MARTINEZ A A , et al. The effect of initial conditions on mixing transition of the Richtmyer-Meshkov instability[J]. Journal of Fluid Mechanics, 2020, 904, A3.
DOI
|
26 |
ZHOU Ye . Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. Ⅰ[J]. Physics Reports, 2017, 720/722, 1- 136.
DOI
|
27 |
ZHANG Huasen , BETTI R , YAN Rui , et al. Nonlinear bubble competition of the multimode ablative Rayleigh-Taylor instability and applications to inertial confinement fusion[J]. Physics of Plasmas, 2020, 27 (12): 122701.
DOI
|
28 |
WEBER C R , DÖPPNER T , CASEY D T , et al. First measurements of fuel-ablator interface instability growth in inertial confinement fusion implosions on the national ignition facility[J]. Physical Review Letters, 2016, 117, 075002.
DOI
|
29 |
BETTI R , GONCHAROV V N , MCCRORY R L , et al. Growth rates of the ablative Rayleigh-Taylor instability in inertial confinement fusion[J]. Physics of Plasmas, 1998, 5 (5): 1446- 1454.
DOI
|
30 |
ZHOU Y , CABOT W H , THORNBER B . Asymptotic behavior of the mixed mass in Rayleigh-Taylor and Richtmyer-Meshkov instability induced flows[J]. Physics of Plasmas, 2016, 23 (5): 052712.
DOI
|
31 |
ZHANG Yousheng , RUAN Yucang , XIE Hansong , et al. Mixed mass of classical Rayleigh-Taylor mixing at arbitrary density ratios[J]. Physics of Fluids, 2020, 32 (1): 011702.
DOI
|
32 |
ZHANG Yousheng , NI Weidan , RUAN Yucang , et al. Quantifying mixing of Rayleigh-Taylor turbulence[J]. Physical Review Fluids, 2020, 5, 104501.
DOI
|
33 |
RUAN Yucang , ZHANG Yousheng , TIAN Baolin , et al. Density-ratio-invariant mean-species profile of classical Rayleigh-Taylor mixing[J]. Physical Review Fluids, 2020, 5, 054501.
DOI
|
34 |
CHENG Baolian , GLIMM J , JIN H , et al. Theoretical methods for the determination of mixing[J]. Laser and Particle Beams, 2003, 21 (3): 429- 436.
DOI
|
35 |
GLIMM J , JIN H , LAFOREST M , et al. A two pressure numerical model of two fluid mixing[J]. Multiscale Modeling & Simulation, 2003, 1 (3): 458- 484.
|
36 |
CHENG B L , GLIMM J , SALTZ D , et al. Boundary conditions for a two pressure two-phase flow model[J]. Physica D. Nonlinear Phenomena, 1999, 133 (1/4): 84- 105.
|
37 |
DIMOTAKIS P E . Turbulent mixing[J]. Annual Review of Fluid Mechanics, 2005, 37, 329- 356.
DOI
|
38 |
RISTORCELLI J R . Exact statistical results for binary mixing and reaction in variable density turbulence[J]. Physics of Fluids, 2017, 29 (2): 020705.
DOI
|
39 |
MOIN P , MAHESH K . Direct numerical simulation: A tool in turbulence research[J]. Annual Review of Fluid Mechanics, 1998, 30, 539- 578.
DOI
|
40 |
BORIS J P , GRINSTEIN F F , ORAN E S , et al. New insights into large eddy simulation[J]. Fluid Dynamics Research, 1992, 10 (4/6): 199- 228.
|
41 |
FUREBY C , GRINSTEIN F F . Large eddy simulation of high-reynolds-number free and wall-bounded flows[J]. Journal of Computational Physics, 2002, 181 (1): 68- 97.
DOI
|
42 |
DRIKAKIS D , HAHN M , MOSEDALE A , et al. Large eddy simulation using high-resolution and high-order methods[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 367 (1899): 2985- 2997.
DOI
|
43 |
WILCOX D C . Turbulence modeling for CFD[M]. CA: DCW industries, 1998.
|
44 |
ZHOU Ye . Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. Ⅱ[J]. Physics Reports, 2017, 723/725, 1- 160.
DOI
|
45 |
DIMONTE G , TIPTON R . K-L turbulence model for the self-similar growth of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities[J]. Physics of Fluids, 2006, 18 (8): 085101.
DOI
|
46 |
MORÁN-LÓPEZ J T , SCHILLING O . Multicomponent Reynolds-averaged Navier-Stokes simulations of reshocked Richtmyer-Meshkov instability-induced mixing[J]. High Energy Density Physics, 2013, 9 (1): 112- 121.
DOI
|
47 |
BESNARD D, HARLOW F H, RAUENZAHN R M, et al. Turbulence transport equations for variable-density turbulence and their relationship to two-field models: LA-12303-MS; ON: DE92017292[R]. New York: United States, 1992.
|
48 |
YOUNGS D L . Numerical simulation of mixing by Rayleigh-Taylor and Richtmyer-Meshkov instabilities[J]. Laser and Particle Beams, 1994, 12 (4): 725- 750.
DOI
|
49 |
LLOR A . Statistical hydrodynamic models for developed mixing instability flows: Analytical "0D" evaluation criteria, and comparison of single-and two-phase flow approaches[M]. Heidelberg: Springer Berlin, 2005.
|
50 |
CHEN Yupin , GLIMM J , SHARP D H , et al. A two-phase flow model of the Rayleigh-Taylor mixing zone[J]. Physics of Fluids, 1996, 8, 816- 825.
DOI
|
51 |
CHIRAVALLE V P . The k-L turbulence model for describing buoyancy-driven fluid instabilities[J]. Laser and Particle Beams, 2006, 24 (3): 381- 394.
DOI
|
52 |
KOKKINAKIS I W , DRIKAKIS D , YOUNGS D L , et al. Two-equation and multi-fluid turbulence models for Rayleigh-Taylor mixing[J]. International Journal of Heat and Fluid Flow, 2015, 56, 233- 250.
DOI
|
53 |
MORGAN B E , GREENOUGH J A . Large-eddy and unsteady RANS simulations of a shock-accelerated heavy gas cylinder[J]. Shock Waves, 2016, 26, 355- 383.
DOI
|
54 |
ZHANG Yousheng . Comment on "large-eddy and unsteady RANS simulations of a shock-accelerated heavy gas cylinder" by B. E. Morgan, J. Greenough[J]. Shock Waves, 2018, 28, 1299- 1300.
DOI
|
55 |
KOKKINAKIS I W , DRIKAKIS D , YOUNGS D L . Modeling of Rayleigh-Taylor mixing using single-fluid models[J]. Physical Review E, 2019, 99 (1/1): 013104.
|
56 |
MORGAN B E , WICKETT M E . Three-equation model for the self-similar growth of Rayleigh-Taylor and Richtmyer-Meskov instabilities[J]. Physical Review. E, Statistical, Nonlinear, and soft Matter Physics, 2015, 91 (4): 043002.
DOI
|
57 |
MORGAN B E , SCHILLING O , HARTLAND T A . Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing[J]. Physical Review E, 2018, 97 (1/1): 013104.
|
58 |
BANERJEE A , GORE R A , ANDREWS M J . Development and validation of a turbulent-mix model for variable-density and compressible flows[J]. Physical Review E, 2010, 82, 046309.
DOI
|
59 |
DENISSEN N A , ROLLIN B , REISNER J M , et al. The tilted rocket rig: A Rayleigh-Taylor test case for RANS models[J]. Journal of Fluids Engineering, 2014, 136 (9): 091301.
DOI
|
60 |
GAUTHIER S , BONNET M . A k-ε model for turbulent mixing in shock-tube flows induced by Rayleigh-Taylor instability[J]. Physics of Fluids A: Fluid Dynamics, 1990, 2 (9): 1685- 1694.
DOI
|
61 |
BROUILLETTE M , STURTEVANT B . Experiments on the Richtmyer-Meshkov instability: Small-scale perturbations on a plane interface[J]. Physics of Fluids, 1993, 5 (4): 916- 930.
DOI
|
62 |
ANDRONOV V A , BAKHRAKH S M , MESHKOV E E , et al. Turbulent mixing at contact surface accelerated by shock waves[J]. Journal of Experimental and Theoretical Physics, 1976, 44 (2): 424- 427.
|
63 |
GRÉA B J . The dynamics of the $k-\epsilon$ mix model toward its self-similar Rayleigh-Taylor solution[J]. Journal of Turbulence, 2015, 16 (2): 184- 202.
DOI
|
64 |
VALERIO E , JOURDAN G , HOUAS L , et al. Modeling of Richtmyer-Meshkov instability-induced turbulent mixing in shock-tube experiments[J]. Physics of Fluids, 1999, 11 (1): 214- 225.
DOI
|
65 |
GITTINGS M , WEAVER R , CLOVER M , et al. The RAGE radiation-hydrodynamic code[J]. Computational Science & Discovery, 2008, 1 (1): 015005.
|
66 |
SCHWARZKOPF J D , LIVESCU D , GORE R A , et al. Application of a second-moment closure model to mixing processes involving multicomponent miscible fluids[J]. Journal of Turbulence, 2011, 12, N49.
DOI
|
67 |
HAINES B M , GRINSTEIN F F , WELSER-SHERRILL L , et al. Simulations of material mixing in laser-driven reshock experiments[J]. Physics of Plasmas, 2013, 20 (2): 022309.
DOI
|
68 |
WELSER-SHERRILL L , FINCKE J , DOSS F , et al. Two laser-driven mix experiments to study reshock and shear[J]. High Energy Density Physics, 2013, 9 (3): 496- 499.
DOI
|
69 |
WALTZ J , GIANAKON T A . A comparison of mix models for the Rayleigh-Taylor instability[J]. Computer Physics Communications, 2012, 183 (1): 70- 79.
DOI
|
70 |
XIAO Mengjuan , ZHANG Yousheng , TIAN Baolin . Unified prediction of reshocked Richtmyer-Meshkov mixing with K-L model[J]. Physics of Fluids, 2020, 32 (3): 032107.
DOI
|
71 |
XIE Hansong , XIAO Mengjuan , ZHANG Yousheng . Predicting different turbulent mixing problems with the same k-ε model and model coefficients[J]. AIP Advances, 2021, 11 (7): 075213.
DOI
|
72 |
XIE Hansong , XIAO Mengjuan , ZHANG Yousheng . Unified prediction of turbulent mixing induced by interfacial instabilities via Besnard-Harlow-Rauenzahn-2 model[J]. Physics of Fluids, 2021, 33 (10): 105123.
DOI
|
73 |
XIAO Mengjuan , ZHANG Yousheng , TIAN Baolin . A K-L model with improved realizability for turbulent mixing[J]. Physics of Fluids, 2021, 33 (2): 022104.
DOI
|
74 |
SHIH T H , LIOU W W , SHABBIR A , et al. A new $ k-\epsilon$ eddy viscosity model for high reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24 (3): 227- 238.
|
75 |
BANERJEE A , GORE R A , ANDREWS M J . Development and validation of a turbulent-mix model for variable-density and compressible flows[J]. Physical Review. E, Statistical, Nonlinear, and soft Matter Physics, 2010, 82 (4 Pt 2): 046309.
|
76 |
ZHANG Yousheng , HE Zhiwei , XIE Hansong , et al. Methodology for determining coefficients of turbulent mixing model[J]. Journal of Fluid Mechanics, 2020, 905, A26.
DOI
|
77 |
XIAO Mengjuan , ZHANG Yousheng , TIAN Baolin . Modeling of turbulent mixing with an improved K-L model[J]. Physics of Fluids, 2020, 32 (9): 092104.
DOI
|
78 |
XIE Hansong , ZHAO Yaoming , ZHANG Yousheng . Data-driven nonlinear K-L turbulent mixing model via gene expression programming method[J]. Acta Mechanica Sinica, 2022, 39 (2): 322315.
|
79 |
SHIH T H , ZHU Jiang , LUMLEY J L . A new Reynolds stress algebraic equation model[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 125 (1/4): 287- 302.
|
80 |
POPE S B . On the relationship between stochastic Lagrangian models of turbulence and second-moment closures[J]. Physics of Fluids, 1994, 6 (2): 973- 985.
DOI
|
81 |
WEATHERITT J , SANDBERG R . A novel evolutionary algorithm applied to algebraic modifications of the RANS stress-strain relationship[J]. Journal of Computational Physics, 2016, 325, 22- 37.
DOI
|
82 |
ZHAO Yaomin , AKOLEKAR H D , WEATHERITT J , et al. RANS turbulence model development using CFD-driven machine learning[J]. Journal of Computational Physics, 2020, 411, 109413.
DOI
|
83 |
CHAPMAN P R , JACOBS J W . Experiments on the three-dimensional incompressible Richtmyer-Meshkov instability[J]. Physics of Fluids, 2006, 18 (7): 074101.
DOI
|
84 |
VETTER M , STURTEVANT B . Experiments on the Richtmyer-Meshkov instability of an air/SF6 interface[J]. Shock Waves, 1995, 4 (5): 247- 252.
DOI
|
85 |
LIVESCU D , WEI T , PETERSEN M R . Direct numerical simulations of Rayleigh-Taylor instability[J]. Journal of Physics: Conference Series, 2011, 318, 082007.
DOI
|
86 |
SENGUPTA A , SUNDARAM P , SUMAN V K , et al. Three-dimensional direct numerical simulation of Rayleigh-Taylor instability triggered by acoustic excitation[J]. Physics of Fluids, 2022, 34 (5): 054108.
DOI
|
87 |
HILL D J , PANTANO C , PULLIN D I . Large-eddy simulation and multiscale modelling of a Richtmyer-Meshkov instability with reshock[J]. Journal of Fluid Mechanics, 2006, 557, 29- 61.
DOI
|
88 |
HILL D J, PANTANO C, PULLIN D I. Large-eddy simulation of Richtmyer-Meshkov instability[M]//KASSINOS S C, LANGER C A, IACCARINO G, et al. Complex Effects in Large Eddy Simulations. Lecture Notes in Computational Science and Engineering. Heidelberg: Springer, 2007: 263-271.
|
89 |
GERMANO M , PIOMELLI U , MOIN P , et al. A dynamic subgrid-scale eddy viscosity model[J]. Physics of Fluids, 1991, 3 (7): 1760- 1765.
DOI
|
90 |
SCHILLING O , LATINI M . High-order WENO simulations of three-dimensional reshocked Richtmyer-Meshkov instability to late times: Dynamics, dependence on initial conditions, and comparisons to experimental data[J]. Acta Mathematica Scientia, 2010, 30 (2): 595- 620.
DOI
|
91 |
UKAI S, GENIN F, SRINIVASAN S, et al. Large eddy simulation of re-shocked Richtmyer-Meshkov instability[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Orlando, Florida: AIAA, 2009: AIAA2009-944.
|
92 |
BIN Yuanwei , XIAO Mengjuan , SHI Yipeng , et al. A new idea to predict reshocked Richtmyer-Meshkov mixing: Constrained large-eddy simulation[J]. Journal of Fluid Mechanics, 2021, 918, R1.
DOI
|
93 |
XIAO Mengjuan , HU Zexi , DAI Zihuan , et al. Experimentally consistent large-eddy simulation of re-shocked Richtmyer-Meshkov turbulent mixing[J]. Physics of Fluids, 2022, 34 (12): 125125.
DOI
|
94 |
POPE S B . Turbulent flows[M]. Cambridge: Cambridge University Press, 2000.
|
95 |
LIVESCU D , RISTORCELLI J R , GORE R A , et al. High-Reynolds number Rayleigh-Taylor turbulence[J]. Journal of Turbulence, 2009, 10, N13.
DOI
|
96 |
PEREIRA F S , GRINSTEIN F F , ISRAEL D M , et al. Partially averaged Navier-Stokes closure modeling for variable-density turbulent flow[J]. Physical Review Fluids, 2021, 6, 084602.
DOI
|
97 |
BRAUN N O , GORE R A . A passive model for the evolution of subgrid-scale instabilities in turbulent flow regimes[J]. Physica D: Nonlinear Phenomena, 2020, 404, 132373.
DOI
|
98 |
GRINSTEIN F F , SAENZ J A , RAUENZAHN R M , et al. Dynamic bridging modeling for coarse grained simulations of shock driven turbulent mixing[J]. Computers & Fluids, 2020, 199, 104430.
|