[1] SALTELLI A, TARANTOLA S, CAMPOLONGO F, RATTO M. Sensitivity analysis in practice: a guide to assessing scientific models[M]. Chichester: John Wiley & Sons Ltd, 2004. [2] SALTELLI A, CHAN K, SCOTT E M. Sensitivity analysis[M]//Wiley Series in Probability and Statistics. Wiley, 2000. [3] HELTON J C. Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive-waste disposal[J]. Reliability Engineering and System Safety, 1993, 42(2-3): 327-367. [4] DOWNING D J, GARDNER R H, HOFFMAN F O. An examination of response-surface methodologies for uncertainty analysis in assessment models[J]. Technometrics, 1985, 27: 151-163. [5] MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 21: 239-245. [6] MORRIS M D. Factorial sampling plans for preliminary computational experiments[J]. Technometrics, 1991, 33(2): 161-174. [7] CUKIER R I, FORTUIN C M, SHULER K E, et al. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients: I. theory[J]. J Chem Phys, 1973, 59(3): 3873-3878. [8] SOBOL'I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Math Comput Simulation, 2001, 55(1-3): 271-280. [9] SACKS J, WELCH W J, MITCHELL T J, WYNN H P. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4: 409-435. [10] WANG P, LU Z, TANG Z. An application of the Kriging method in global sensitivity analysis with parameter uncertainty[J]. Applied Mathematical Modelling, 2013, 37: 6543-6555. [11] LE Maitre O, KNIO O. Spectral methods for uncertainty quantification[M]. Springer, 2010. [12] XIU D. Numerical methods for stochastic computations: a spectral method approach[M]. Princeton University Press, 2010. [13] SUDRET B. Global sensitivity analysis using polynomial chaos expansions[J]. Reliability Engineering and System Safety, 2008, 93: 964-979. [14] BLATMAN G, SUDRET B. Efficient computation of global sensitivity indices using sparse polynomial chaos expansions[J]. Reliability Engineering and System Safety, 2010, 95: 1216-1229. [15] BLATMAN G, SUDRET B. Adaptive sparse polynomial chaos expansion based on least angle regression[J]. J Comput Phys,2011, 230: 2345-2367. [16] DOOSTAN A, OWHADI H. A non-adapted sparse approximation of PDEs with stochastic inputs[J]. Journal of Computational Physics, 2011, 230: 3015-3034. [17] YAN L, GUO L, XIU D. Stochastic collocation algorithms using l1-minimization[J]. Journal for Uncertainty Quantification, 2012, 2(3): 279-293. [18] WIENER N. The homogeneous chaos[J]. Amer J Math, 1938, 60: 897-936. [19] GHANEM R G, SPANOS P. Stochastic finite elements: a spectral approach[M]. Springer-Verlag, 1991. [20] XIU D, KARNIADAKIS G E. The Wiener-Askey polynomial chaos for stochastic differential equations[J]. SIAM J Sci Comput, 2002, 24(2): 619-644. [21] XIU D, KARNIADAKIS G E. Modeling uncertainty in flow simulations via generalized polynomial chaos[J]. J Comput Phys, 2003, 187(1): 137-167. [22] GAUTSCHI W. On generating orthogonal polynomials[J]. SIAM J Sci Stat Comput, 1982, 3(3): 289-317. [23] FIELD R V. Numerical methods to estimate the coefficients of the polynomial chaos expansion[C]. Proceedings of the 15th ASCE Engineering Mechanics Conference, 2002. [24] MOROKOFF W, CAFLISCH R. Quasi-Monte Carlo integration[J]. J Comput Phys, 1995, 122(2): 218-230. [25] CHOI S K, GRANDHI R V, CANFIELD R A, PETTIT C L. Polynomial chaos expansion with Latin Hypercube sampling for estimating response variability[J]. AIAA J, 2004, 45: 1191-1198. [26] SMOLYAK S A. Quadrature and interpolation formulas for tensor products of certain classes of functions[J]. Sov Math Dokl, 1963, 4: 240-243. [27] CHEN S S, DONOHO D L, SAUNDERS M. Atomic decomposition by basis pursuit[J]. SIAM J Sci Comput, 1998, 20: 33-61. [28] CANDES E J, ROMBERG J K, TAN T. Stable signal recovery from incomplete and inaccurate measurements[J]. Comm Pure Appl Math, 2006, 59(8): 1207-1223. [29] CANDES E J. The restricted isometry property and its implications for compressed sensing[J]. C R Math Acad Sci Paris Series I, 2008, 346: 589-592. [30] FOUCART S, LAI M. Sparsest solutions of underdetermined linear systems via l1-minimization for 0[31] CAI T, WANG L, XU G. Shifting inequality and recovery of sparse signals[J]. IEEE Trans Signal Process, 2010, 58: 1300-1308. [32] MO Q, LI S. New bounds on the restricted isometry constant δ2s[J]. Appl Comp Harm Anal, 2011, 31: 460-468. [33] BARANIUK R G, DAVENPORT M, DEVORE R A, WAKIN M. A simple proof of the restricted isometry property for random matrices[J]. Constr Approx, 2008, 28: 253-263. [34] RAUHUT H. Compressive sensing and structured random matrices[M]//M Fornasier, ed. Theoretical foundations and numerical methods for sparse recovery, Volume 9 of Radon Series Comp Appl Math, pages 1-92. deGruyter, 2010. [35] EFRON B, HASTIE T, JOHNSTONE L, TIBSHIRANI R. Least angle regression[J]. Ann Stat, 2004, 32: 407-499. [36] OSBORNE M R, PRESNELL B, TURLACH B. A new approach to variable selection in least squares problems[J]. IMA J Numer Anal, 2000, 20: 389-403. [37] HALE E T, YIN W, ZHANG Y. Fixed-point continuation for ‘1-minimization: methodology and convergence[J]. SIAM J Optim, 2008, 19(3): 1107-1130. [38] BREDIES K, LORENZ D A. Linear convergence of iterative soft-thresholding[J], SIAM J Sci Comp, 2008, 30(2): 657-683. [39] VAN DEN BERG E, FRIEDLANDER M P. Probing the Pareto frontier for basis pursuit solutions[J]. SIAM J Sci Comput, 2008, 31(2): 890-912. [40] SOBOL'I M. Sensitivity estimates for nonlinear mathematical models[J]. Matem Modelirovanie 1990, 2(1): 112-118[in Russian]. English translation: Math Modeling Comput Exp, 1993, 1(4): 407-414. [41] SALTELLI A. Making best use of model evaluations to compute sensitivity indices[J]. Computer Physics Communications, 2002, 145: 280-97. [42] ISHIGAMI T, HOMMA T. An importance quantification technique in uncertainty analysis for computer models[C]//Proceedings of the ISUMA' 90, first international symposium on uncertainty modeling and analysis, University of Maryland, 1990: 398-403. [43] SOBOL'I M. Theorems and examples on high dimensional model representation[J]. Reliability Engineering and System Safety, 2003, 79: 187-193. [44] GENZ A. A package for testing multiple integration subroutines[M]//Numerical integration: recent developments, software and applications, 1987: 337-340. [45] SUDRET B, MAI C V. Computing derivative-based global sensitivity measures using polynomial chaos expansions[J]. Rel Eng & Sys Safety, 2015, 134: 241-250. [46] BORGONOVO E. A new uncertainty importance measure[J]. Reliability Engineering & System Safety, 2007, 92(6): 771-784. [47] RAJABIA M M, ATAIE-ASHITANIA B, SIMMONS C T. Polynomial chaos expansions for uncertainty propagation and moment independent sensitivity analysis of seawater intrusion simulations[J]. Journal of Hydrology, 2015, 520: 101-122. [48] PATTERSON T N L. The optimal addition of points to quadrature formulae[J]. Mathematics of Computation, 1968, 22: 847-856. [49] GENZ A, KEISTER B D. Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight[J]. Journal of Compuational and Applied Mathematics, 1996, 71: 299-309. |