[1] BERNECKER P R, SANDUSKY H W, CLAIRMONT A R. Deflagration-to-detonation transition studies of a double-based propellant[C]. 8th International Detonation Symposium, New Mexico, USA, 1985: 658-668. [2] BAER M R, NUNZIATO J W. A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[J]. Int J Multiphase Flow, 1986, 12: 861-889. [3] POWERS J M, STEWART D S, KRIER H. Theory of two-phase detonation-Part 1: Modeling[J]. Combust Flame, 1990, 80: 264-279. [4] GONTHIER K A, POWERS J M. A high-resolution numerical method for a two-phase model of deflagration-to-detonation transition[J], J Comput Phys, 2000, 163: 376-433. [5] YANG T, JIN Z M, ZHANG X B. A mathematical model of deflagration to detonation transition in highly loaded propellant beds[J]. Journal of Ballistics,1992,(2): 1-9. [6] YANG T, JIN Z M. Numerical simulation of deflagration-to-detonation transition in highly packed granular propellant beds[J]. Journal of Propulsion Technology,1994,(6): 76-82. [7] ZHANG X B, YUAN Y X. Modeling of DDT in high loaded propellant beds[J]. Journal of Ballistics,1996, 8: 16-25. [8] QIN G C, HOU X, CHERN L Q, et al. Numerical simulation of deflagration-to-detonation transition in high energy propellant[J]. Journal of Solid Rocket Technology,2006, 29(3): 186-189. [9] JIA X R, LI D X, SUN J S, et al. An analysis of the deflagrantion-to-detonation transition (DDT) in NEPE propellants[J]. Acta Armamentarii, 1997, 18: 46-51. [10] DUAN B F. Study on the deflagration to detonation transition in insensitive industry explosives[M]. Beijing: China Water & Power Press, 2009. [11] DONG H F, ZHAO Y H, HONG T. Numerical simulation of the deflagration-to-detonation transition behavior of explosive HMX[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 601-607. [12] JACKSON S I. Deflagration phenomena in energetic materials: an overview[M]//ASAY B W. Shock Wave Science and Technology Reference Library, Vol. 5: Non-shock Initiation of Explosives, Springer, 2010. [13] MARGOLIN A D, CHUIKO S V. Combustion instability of a porous charge with spontaneous penetration of the combustion products into the pores[J]. Combustion, Explosion, and Shock Waves, 1966, 2(3): 72-75. [14] SON S F, BERGHOUT H L, BOLME C A, et al. Burn rate measurements of HMX, TATB, DHT, DAAF, and BTATz[J]. Proceedings of the Combustion Institute, 2000, 28: 919-924. [15] GLASCOE E A, MAIENSCHEIN J L, LORENZ K T, et al. Deflagration measurements of three insensitive high explosives: LLM105, TATB, and DAAF[C]. 14th International Detonation Symposium, Idaho, USA, 2010. [16] WEN S G, WANG S Q, HUANG W B, et al. An experimental study on deflagration-to-detonation transition in high-density composition[J]. Explosion and Shock Wave, 2007, 27(6): 567-571. [17] WANG J, WEN S G. Experimental study on deflagration-to-detonation transition in two pressed high-density explosives[J]. Chinese Journal of High Pressure Physics, 2009, 23: 441-446. [18] CHANG S C. The method of space-time conservation element and solution element-a new approach for solving the NavierStokes and Euler equations[J]. J Comput Phys, 1995, 119: 295-324. [19] ZHANG D L, WANG J T, WANG G. High-order CE/SE method and applications[J]. Chinese Journal of Computational Physics, 2009, 26(2): 211-310. [20] DONG H F, HONG T, ZHANG X L. Numerical simulation of explosive dust detonation with CE/SE method[J]. Chinese Journal of Computational Physics, 2012, 29(4): 495-502. [21] GONTHIER K A, POWERS J M. A numerical investigation of transient detonation in granulated material[J]. Shock Waves, 1996, 6: 183-195. [22] NARIN B. One-and two-dimensional numerical simulation of deflagration to detonation transition in solid energetic materials[D]. PhD Thesis, Middle East Technical University, 2010. |