[1] ONG H C, CHANG R P H. Optical constants of wurtzite ZnS thin films determined by spectroscopic ellipsometry[J]. Appl Phys Lett, 2011, 79(22): 3612-3614. [2] TRAN T K, PARK W, TONG W, et al. Photoluminescence properties of ZnS epilayers[J]. J Appl Phys, 1997, 81(6): 2803-2809. [3] WANG Y W, ZHANG L D, LIANG C H, et al. Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires[J]. Chem Phys Lett, 2002, 357(3-4): 314-318. [4] DINSMORE A D, HSU D S, GRAY H F, et al. Mn-doped ZnS nanoparticles as efficient low-voltage cathodoluminescent phosphors[J]. Appl Phys Lett, 1999, 75(6): 802(1-3). [5] DENZLER D, OLSCHEWSKI M, SATTLER K. Luminescence studies of localized gap states in colloidal ZnS nanocrystals[J]. J Appl Phys, 1998, 84(5): 2841-2845. [6] YUAN G D, YE Z Z, ZHU L P, et al. Control of conduction type in Al-and N-codoped ZnO thin films[J]. Appl Phys Lett, 2005, 86(20): 202106-201108. [7] ZHOU T Y, XIN X Q. Room temperature solid-state reaction-a convenient novel route to nanotubes of zinc sulfide[J]. Nanotechnology, 2004, 15(5): 534-536. [8] SHEN X P, HAN M, HONG J M, et al. Template-based CVD synthesis of ZnS nanotube arrays[J].Chem Vapor Depos,2005, 11(5): 250-253. [9] YIN L W, BANDO Y, ZHAN J H, et al. Self-assemble highly faceted wurtzite-type ZnS single-crystalline nanotubes with hexagonal cross-sections[J]. Adv Mater, 2005, 17(14): 1972-1977. [10] ZHAI T Y, GU Z J, MA Y, et al. Synthesis of ordered ZnS nanotubes by MOCVD-template method[J]. Mater Chem Phys, 2006, 100(2-3): 281-284. [11] ZUTIC I, FABIAN J, SARMA S D. Spintronics: Fundamentals and applications[J]. Rev Mod Phys, 2004, 76(2): 323-410. [12] FU L, CAO L C, ZHU D B. Molecular and nanoscale materials and devices in electronics[J]. Adv Colloid Interface Sci, 2004, 111(3): 133-157. [13] LU J G, CHANG P C, FAN Z Y. Quasi-one-dimensional metal oxide materials-Synthesis, properties and applications[J]. Mater Sci Eng R, 2006, 52(1-3): 49-91. [14] HE A L, WANG X Q, FAN Y Q, et al. Electronic structure and magnetic properties of Mn-doped ZnO nanotubes: An ab initio study[J]. J Appl Phys, 2010, 108(8): 084308(1-5). [15] CHEN G X, ZHANG Y, WANG D D, et al. Structural, electronic and magnetic properties of the 3d transition metal-doped GaN nanotubes[J]. Solid State Communications, 2011,151(2): 139-143. [16] LI L, LI D, LIU S Y, et al. Electronic properties of Mn doping ZnS (001) surfaces[J]. Chinese J Comput Phys, 2010, 27(2): 293-298. [17] SONG D W, NIU Y, XIAO L, et al. Structural, electronic, and magnetic properties of Mn-doped ZnS (110) surfaces: First-principles study[J]. Chinese J Comput Phys, 2012, 29(2): 277-284. [18] STERN R A, SCHULER T M, MACLAREN J M, et al. Calculated half-metallic behavior in dilute magnetically doped ZnS[J]. J Appl Phys, 2004, 95(11): 7468-7470. [19] TABLERO C. Electronic and magnetic properties of ZnS doped with Cr[J]. Phys Rev B, 2006, 74(19): 195203(1-9). [20] MCNORTON R D, SCHULER T M, MACLAREN J M, et al. Systematic trends of first-principles electronic structure computations of Zn1-x Ax B diluted magnetic semiconductors[J]. Phys Rev B, 2008, 78(7): 075209(1-11). [21] CHEN H X, SHI D N, QI J S. Comparative studies on magnetic properties of ZnS nanowires doped with transition-metal atoms[J]. J Appl Phys, 2011, 109(8): 084338(1-9). [22] CHEN H X, LIU C L. Stability,electronic and magnetic properties of ZnS nanotubes: A comparative study[J]. Chinese J Comput Phys, 2013, 30(1): 148-157. [23] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865-3868. [24] DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J Chem Phys, 1990, 92(1): 508-517. [25] DELLEY B. From molecules to solids with the DMol3approach[J]. J Chem Phys, 2000, 113(18): 7756-7764. [26] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865-3868. [27] MULLIKEN R S. Electronic population analysis on LCAO MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies[J]. J Chem Phys, 1955, 23(10): 1841-1846. [28] XIE J M, CHEN H X. Magnetic properties of single-wall ZnS nanotubes doped with Fe atoms[J]. Chinese J Comput Phys,2015, 32(1): 93-100. [29] YUAN H J, YAN X Q, ZHANG Z X, et al. Synthesis, optical, and magnetic properties of Zn1-x Mnx S nanowires grown by thermal evaporation[J]. J Cryst Growth, 2004, 271(3-4): 403-408. [30] KANG T, SUNG J, SHIM W, et al. Synthesis and magnetic properties of single-crystalline Mn/Fe-doped and co-doped ZnS nanowires and nanobelts[J]. J Phys Chem C, 2009, 113(14): 5352-5357. [31] HIMPSEL F J. Exchange splitting of epitaxial fcc Fe/Cu (100) versus bcc Fe/Ag (100)[J]. Phys Rev Lett,1991, 67(17): 2363-2366. [32] ORTEG J E, HIMPSEL F J. Inverse Photoemission from V, Cr, Mn, Fe, and Co monolayers on Ag (100)[J]. Phys Rev B, 1993, 47(24): 16441-16446. [33] WANG Q, SUN Q, JENA P. Ferromagnetism in Mn-doped GaN nanowires[J]. Phys Rev Lett, 2005, 95(16): 167202(1-4). [34] SCHMIDT T M, VENEZUELA M P, Arantes J T, et al. Electronic and magnetic properties of Mn-doped InP nanowires from first principles[J]. Phys Rev B, 2006, 73(23): 235330(1-5). [35] SCHMIDT T M. Surface effects on the energetic and spintronic properties of InP nanowires diluted with Mn: First-principles calculations[J]. Phys Rev B, 2008, 77(8): 085325(1-6). [36] GHOST S, WANG Q, DAS G P, et al. Magnetism in ZnO nanowire with Fe/Co codoping: First-principles density functional calculations[J]. Phys Rev B, 2010, 81(23): 235215(1-10). [37] HUANG X, MAKMAL A, CHELIKOWSKY J R, et al. Size-dependent spintronic properties of dilute magnetic semiconductor nanocrystals[J]. Phys Rev Lett,2005, 94(23): 236801(1-4). [38] SHARMA V K, NAJIM M, VARMA G D. Effect of carbon co-doping on the magnetic properties of bulk Mn doped ZnO[J]. J Magn Magn Mater,2011, 323(24): 3198-3201. |