CHINESE JOURNAL OF COMPUTATIONAL PHYSICS ›› 2017, Vol. 34 ›› Issue (2): 221-229.
Previous Articles Next Articles
ZOU Jihang, YE Zhenqiang, CAO Bingyang
Received:
2016-01-20
Revised:
2016-05-08
Online:
2017-03-25
Published:
2017-03-25
CLC Number:
ZOU Jihang, YE Zhenqiang, CAO Bingyang. Effects of Potential Models on Thermal Properties of Graphene in Molecular Dynamics Simulations[J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(2): 221-229.
[1] BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146: 351-355. [2] LEE G G, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321: 385-388. [3] BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layer graphene [J]. Nano Letters, 2008, 8(3): 902-907. [4] BAE S, KIM H, LEE Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnology, 2010, 5(8): 574-578. [5] GEIM A K, KIM P. Carbon wonderland [J]. Scientific American, 2008, 298(4): 90-97. [6] GEIM A K. Graphene: Status and prospects [J]. Science, 2009, 324(5934): 1530-1534. [7] ALLEN M J, TUNG V C, KANER R B. Honeycomb carbon: A review of graphene [J]. Chemical Reviews, 2009, 110(1): 132-145. [8] STANKOVICH S, DIKIN D A, DOMMETT G H B, et al. Graphene-based composite materials [J]. Nature, 2006, 442(7100): 282-286. [9] BU H, CHEN Y, ZOU M, et al. Atomistic simulations of mechanical properties of graphene nanoribbons [J]. Physics Letters A, 2009, 373(37): 3359-3362. [10] BUNCH J S, VAN DER ZANDE A M, VERBRIDGE S S, et al. Electromechanical resonators from graphene sheets [J]. Science, 2007, 315(5811): 490-493. [11] NETO A H C, GUINEAR F, PERES N M R, et al. The electronic properties of graphene [J]. Reviews of Modern Physics, 2009, 81(1): 109. [12] ZHANG Y, TAN Y W, STORMER H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene [J]. Nature, 2005, 438(7065): 201-204. [13] SHAO Q, LIU G, TEWELDEBRHAN D, et al. High-temperature quenching of electrical resistance in graphene interconnects [J]. Applied Physics Letters, 2008, 92(20): 202108. [14] CAI W, MOORE A L, ZHU Y, et al. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition [J]. Nano Letters, 2010, 10(5): 1645-1651. [15] JAUREGUI L A, YUE Y, SIDOROV A N, et al. Thermal transport in graphene nanostructures: Experiments and simulations [J]. ECS, 2010, 28(5): 73-83. [16] GHOSH S, BAO W, NIKA D L, et al. Dimensional crossover of thermal transport in few-layer graphene [J]. Nature Materials, 2010, 9(7): 555-558. [17] CHEN S, WU Q, MISHRA C, et al. Thermal conductivity of isotopically modified graphene [J]. Nature Materials, 2012, 11:203-207. [18] BALANDIN A A. Thermal properties of graphene and nanostructured carbon materials [J]. Nature Materials, 2011, 10(8): 569-581. [19] NIKA D L, POKATILOV E P, ASKEROV A S, et al. Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering [J]. Physical Review B, 2009, 79(15): 155413. [20] NIKA D L, GHOSH S, POKATILOV E P, et al. Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite [J]. Applied Physics Letters, 2009, 94(20): 203103. [21] CEPELLOTTI A, FUGALLO G, PAULATTO L, et al. Phonon hydrodynamics in two-dimensional materials [J]. Nature Communications, 2015, 6. [22] LEE S, BROIDO D, ESFARJANI K, et al. Hydrodynamic phonon transport in suspended graphene [J]. Nature Communications, 2015, 6. [23] POP E, VARSHNEY V, ROY A K. Thermal properties of graphene: Fundamentals and applications [J]. MRS Bulletin, 2012, 37(12): 1273-1281. [24] BANERJEE S K, REGISTER L F, TUTUC E, et al. Graphene for CMOS and beyond CMOS applications [J]. Proceedings of the IEEE, 2010, 98(12): 2032-2046. [25] GHOSH S, CALIZO I, TEWELDEBRHAN D, et al. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits [J]. Applied Physics Letters, 2008, 92(15): 151911. [26] LEE J U, YOON D, KIM H, et al. Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy [J]. Physical Review B, 2011, 83(8): 081419. [27] FAUGERAS C, FAUGERAS B, ORLITA M, et al. Thermal conductivity of graphene in corbino membrane geometry [J]. ACS Nano, 2010, 4(4): 1889-1892. [28] KLEMENS P G. Theory of thermal conduction in thin ceramic films [J]. International Journal of Thermophysics, 2001, 22(1): 265-275. [29] SEOL J H, JO I, MOORE A L, et al. Two-dimensional phonon transport in supported graphene [J]. Science, 2010, 328(5975): 213-216. [30] ZHONG W R, ZHANG M P, AI B Q, et al. Chirality and thickness-dependent thermal conductivity of few-layer graphene: A molecular dynamics study [J]. Applied Physics Letters, 2011, 98(11): 113107. [31] HU J, RUAN X, CHEN Y P. Thermal conductivity and thermal rectification in graphene nanoribbons: A molecular dynamics study [J]. Nano Letters, 2009, 9(7): 2730-2735. [32] CAO B Y, YAO W J, YE Z Q. Networked nanoconstrictions: An effective route to tuning the thermal transport properties of graphene [J]. Carbon, 2016, 96: 711-719. [33] ZHANG H, LEE G, CHO K. Thermal transport in graphene and effects of vacancy defects [J]. Physical Review B, 2011, 84(11): 115460. [34] ZHANG H, LEE G, FONSECA A F, et al. Isotope effect on the thermal conductivity of graphene [J]. Journal of Nanomaterials, 2010, 2010: 7. [35] YE Z Q, CAO B Y, YAO W J, et al. Spectral phonon thermal properties in graphene nanoribbons [J]. Carbon, 2015, 93: 915-923. [36] TERSOFF J. Empirical interatomic potential for carbon, with applications to amorphous carbon [J]. Physical Review Letters, 1988, 61(25): 2879. [37] ERHART P, ALBE K. Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide [J]. Physical Review B, 2005, 71(3): 035211. [38] BRENNER D W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films [J]. Physical Review B, 1990, 42(15): 9458. [39] BRENNER D W, SHENDEROVA O A, HARRISON J A, et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J]. Journal of Physics: Condensed Matter, 2002, 14(4): 783. [40] STUART S J, TUTEIN A B, HARRISON J A. A reactive potential for hydrocarbons with intermolecular interactions [J]. The Journal of Chemical Physics, 2000, 112(14): 6472-6486. [41] GUO Z, ZHANG D, GONG X G. Thermal conductivity of graphene nanoribbons [J]. Applied Physics Letters, 2009, 95(16): 163103. [42] 姚文俊, 曹炳阳. 石墨烯中热波传递的分子动力学研究[J]. 科学通报, 2014, 59(25): 2528-2536. [43] YAO W J, CAO B Y. Molecular dynamics studies on ballistic thermal resistance of graphene nano-junctions [J]. Communications in Theoretical Physics, 2015, 63(5): 619. [44] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法[J]. 物理学报, 2014, (7):76501-076501. [45] QIU B, RUAN X. Reduction of spectral phonon relaxation times from suspended to supported graphene [J]. Applied Physics Letters, 2012, 100(19): 193101. [46] 叶振强, 曹炳阳, 过增元. 石墨烯的声子热学性质研究[J]. 物理学报, 2014, 63(15): 154704-154704. [47] EVANS W J, HU L, KEBLINSKI P. Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination [J]. Applied Physics Letters, 2010, 96(20): 203112. [48] LINDSAY L, BROIDO D A. Optimized Tersoff and Rebo empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene [J]. Physical Review B, 2010, 81(20): 205441. [49] KONG L T. Phonon dispersion measured directly from molecular dynamics simulations [J]. Computer Physics Communications, 2011, 182(10): 2201-2207. [50] KONG L T, BARTELS G, CAMPAÑÁ C, et al. Implementation of Green's function molecular dynamics: An extension to LAMMPS [J]. Computer Physics Communications, 2009, 180(6): 1004-1010. [51] TEWARY V K, YANG B. Parametric interatomic potential for graphene [J]. Physical Review B, 2009, 79(7): 075442. [52] LU Q, ARROYO M, HUANG R. Elastic bending modulus of monolayer graphene [J]. Journal of Physics D: Applied Physics, 2009, 42(10): 102002. [53] KOUKARAS E N, KALOSAKAS G, GALIOTIS C, et al. Phonon properties of graphene derived from molecular dynamics simulations [J]. Scientific Reports, 2015, 5:12923. [54] ZHANG J, HUANG X, YUE Y, et al. Dynamic response of graphene to thermal impulse [J]. Physical Review B, 2011, 84(23): 235416. [55] LIU F, MING P, LI J. Ab initio calculation of ideal strength and phonon instability of graphene under tension [J]. Physical Review B, 2007, 76(6): 064120. [56] MOHR M, MAULTZSCH J, DOBARDŽIĆ E, et al. Phonon dispersion of graphite by inelastic X-ray scattering [J]. Physical Review B, 2007, 76(3): 035439. [57] NIKA D L, BALANDIN A A. Two-dimensional phonon transport in graphene [J]. Journal of Physics: Condensed Matter, 2012, 24(23): 233203. [58] LINDSAY L, BROIDO D A, MINGO N. Flexural phonons and thermal transport in graphene [J]. Physical Review B, 2010, 82(11): 115427. [59] KUBO R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems [J]. Journal of the Physical Society of Japan, 1957, 12(6): 570-586. [60] YE Z Q, CAO B Y, LI Y W. Heat current calculation in equilibrium molecular dynamics simulations of thermal conductivity [J]. Chinese J Comput Phys, 2015, 32(2): 186-194. [61] LINDSAY L, BROIDO D A, MINGO N. Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit [J]. Physical Review B, 2010, 82(16): 161402. |
[1] | Shenlang YAN, Shaohui XIANG, Mengqiu LONG. Spin Transport Properties of Zigzag Graphene Nanoribbon Junctions [J]. Chinese Journal of Computational Physics, 2022, 39(6): 751-756. |
[2] | Zhaoyang HOU, Yuan NIU, Qixin XIAO, Zhen WANG, Qingtian DENG. Simulation of Mechanical Behavior and Deformation Mechanism of Al Nanowires Along Different Crystal Orientations [J]. Chinese Journal of Computational Physics, 2022, 39(3): 341-351. |
[3] | Xiaohui WANG, Ping ZHANG. Structural Stability and Anharmonic Effect of Metallic Hydrogen FCC Phase Under High Pressures [J]. Chinese Journal of Computational Physics, 2022, 39(2): 159-164. |
[4] | Hubao A, Zhibing YANG, Ran HU, Yifeng CHEN. Molecular Dynamics Simulations of Capillary Dynamics at the Nanoscale [J]. Chinese Journal of Computational Physics, 2021, 38(5): 603-611. |
[5] | Yong FANG, Yongzhong JIN, Jian CHEN, Hongxiang ZONG, Liying ZHANG. Experimental and Simulation Studies on Relation Between Graphene Thickness and Its Force-distance Curve [J]. Chinese Journal of Computational Physics, 2021, 38(4): 441-446. |
[6] | WANG Guohua, CUI Yaru, YANG Ze, LI Xiaoming, TANG Hongliang, YANG Shufeng. Potential Function and Molecular Dynamics Simulation for FexO-SiO2-CaO-MgO-“NiO” Nickel Slag [J]. Chinese Journal of Computational Physics, 2021, 38(2): 215-223. |
[7] | ZHOU Lu, MA Honghe. Numerical Simulation of Heat Transfer of Synthetic Oil-based Nanofluids in a Parabolic Trough Solar Receiver [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 38(1): 99-105. |
[8] | WANG Xuemei, DONG Bin, ZHU Ziliang, YANG Junsheng. Interfacial Interaction and Diffusion Properties of Functionalized CNT/Polymer Systems: Molecular Dynamics Simulations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(5): 589-594. |
[9] | HE Erbin, LUO Zhirong, ZHU Liuhua. Atomistic Analysis of Myoglobin Mechanical Unfolding [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(2): 205-211. |
[10] | ZHOU Lu, MA Honghe. Molecular Dynamics Simulation on Crystallization Kinetics of Sodium Sulfate in Supercritical Water [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(2): 212-220. |
[11] | SHI Xiaorui, LIU Zhenyu, WU Huiying. Coarse-grained MD Simulation of Nanopore Interaction Influence on Protein Translocation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(1): 63-68. |
[12] | CHAI Rukuan, LIU Yuetian, WANG Junqiang, XIN Jing, PI Jian, LI Changyong. Molecular Dynamics Simulation of Wettability of Calcite and Dolomite [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(4): 474-482. |
[13] | WANG Shuaichuang, ZHANG Gongmu, SUN Bo, SONG Haifeng, TIAN Mingfeng, FANG Jun, LIU Haifeng. Quantum Molecular Dynamics Simulations of Transport Properties of Liquid Plutonium [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(3): 253-258. |
[14] | LIANG Hua, LI Maosheng. Molecular Dynamics Study of Mechanical Properties of Single Crystal Aluminum with Voids and Vacancies [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(2): 211-218. |
[15] | ZHANG Haiyan, YIN Xinchun. Molecular Dynamics Study on Growth Mechanism of Pure Metals Solid-Liquid Interface During Solidification [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(1): 80-88. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.