[1] ADAMS E E, GELHAR L W. Field study of dispersion in a heterogeneous aquifer:2. Spatial moments analysis[J]. Water Resources Research, 1992, 28(12):3293-3307. [2] NIGMATULLIN R R. The realization of the generalized transfer equation in a medium with fractal geometry[J]. Physica Status Solidi, 1986, 133(1):425-430. [3] MEERSCHAERT M M, TADJERAN C. Finite difference approximations for fractional advection-dispersion flow equations[J]. Journal of Computational and Applied Mathematics, 2004, 172(1):65-77. [4] ERVIN V J, ROOP J P. Variational formulation for the stationary fractional advection dispersion equation[J]. Numerical Methods for Partial Differential Equations, 2006, 22(3):558-576. [5] TIAN W Y, DENG W H, WU Y J. Polynomial spectral collocation method for space fractional advection-diffusion equation[J]. Numerical Methods for Partial Differential Equations, 2014, 30(2):514-535. [6] HEJAZI H, MORONEY T, LIU F. Stability and convergence of a finite volume method for the space fractional advection-dispersion equation[J]. Journal of Computational and Applied Mathematics, 2014, 255:684-697. [7] SOUSA E. Finite difference approximations for a fractional advection diffusion problem[J]. Journal of Computational Physics, 2009, 228(11):4038-4054. [8] SU L J, WANG W Q, WANG H. A characteristic difference method for the transient fractional convection-diffusion equations[J]. Applied Numerical Mathematics, 2011, 61(8):946-960. [9] SHEN S, LIU F, ANH V, et al. A characteristic difference method for the variable-order fractional advection-diffusion equation[J]. Journal of Applied Mathematics and Computing, 2013, 42(1-2):371-386. [10] WANG K X, WANG H. A fast characteristic finite difference method for fractional advection-diffusion equations[J]. Advances in Water Resources, 2011, 34(7):810-816. [11] XU Q W, HESTHAVEN J S. Discontinuous Galerkin method for fractional convection-diffusion equations[J]. SIAM Journal on Numerical Analysis, 2014, 52(1):405-423. [12] YILDIRIM A, KOÇAK H. Homotopy perturbation method for solving the space-time fractional advection-dispersion equation[J]. Advances in Water Resources, 2009, 32(12):1711-1716. [13] MOMANI S, ODIBAT Z. Numerical solutions of the space-time fractional advection-dispersion equation[J]. Numerical Methods for Partial Differential Equations, 2008, 24(6):1416-1429. [14] JIA H G, NIE Y F, LI J L. Fracture analysis in orthotropic thermoelasticity using extended finite element method[J]. Advances in Applied Mathematics and Mechanics, 2015, 7(6):780-795. [15] ZHAO G Z, YU X J, LI Z Z. Runge-Kutta control volume discontinuous finite element method for multi-medium field simulations[J]. Chinese Journal of Computational Physics, 2014, 31(3):271-284. [16] XIE X P, XU J C, XUE G R. Uniformly-stable finite element methods for Darcy-Stokes-Brinkman models[J]. Journal of Computational Mathematics, 2008, 26(3):437-455. [17] DOUGLAS, JR J, RUSSELL T F. Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures[J]. SIAM Journal on Numerical Analysis, 1982, 19(5):871-885. [18] PODLUBNY I. Fractional differential equations[M]. Academic Press, San Diego, CA, 1999. |