CHINESE JOURNAL OF COMPUTATIONAL PHYSICS ›› 2017, Vol. 34 ›› Issue (5): 505-525.
Special Issue: 超强激光等离子体相互作用的数值模拟
XU Han1, ZHUO Hongbin2, YANG Xiaohu2, HOU Yong2, YIN Yan2, LIU Jie1
Received:
2017-03-13
Revised:
2017-04-19
Online:
2017-09-25
Published:
2017-09-25
CLC Number:
XU Han, ZHUO Hongbin, YANG Xiaohu, HOU Yong, YIN Yan, LIU Jie. Hybrid Particle-in-Cell/Fluid Model for Hot Electron Transport in Dense Plasmas[J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(5): 505-525.
[1] TABAK M, HAMMER J, GLINSKY M E, et al. Ignition and high gain with ultrapowerful lasers[J]. Physics of Plasmas, 1994, 1:1626-1634. [2] TABAK M, CLARK D S, HATCHETT S P, et al. Review of progress in fast ignition[J]. Physics of Plasmas, 2005, 12:057305. [3] ATZENI S. Inertial fusion fast ignitor: Igniting pulse parameter window vs the penetration depth of the heating particles and the density of the precompressed fuel[J]. Physics of Plasmas, 1999, 6:3316-3326. [4] DAWSON J M. Particle simulation of plasmas[J]. Review Modern Physics, 1983, 55:403-447. [5] BIRDSALL C K, LANGDON A B. Plasma physics via computer simulation[M]. New York, McGraw-Hill, 1985. [6] SENTOKU Y, KEMP A J. Numerical methods for particle simulations at extreme densities and temperatures: Weighted particles, relativistic collisions and reduced currents[J]. Journal of Computing Physics, 2008, 227:6846-6861. [7] WELCH D R, ROSE D V, CUNEO M E, et al. Integrated simulation of the generation and transport of proton beams from laser-target interaction[J]. Physics of Plasmas, 2006, 13:063105. [8] ABE H, SAKAIRI N, ITATANI R. High-order spline interpolations in the particle simulation[J]. Journal of Computing Physics, 1986, 63:247. [9] POINTON T D. Second-order exact charge conservation for electromagnetic particle-in-cell simulation in complex geometry[J]. Computer Physics Communications, 2008,179:535. [10] WELCH D R, ROSE D V, OLIVER B V, CLARK R E. Simulation techniques for heavy ion fusion chamber transport[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 464:134. [11] WELCH D R, ROSE D V, CLARK R E, et al. Implementation of an non-iterative implicit electromagnetic field solver for dense plasma simulation[J]. Computer Physics Communications, 2004, 164:183. [12] TAKIZUKA T, ABE H. A binary collision model for plasma simulation with a particle code[J]. Journal of Computing Physics, 1977, 25:205. [13] NANBU K, YONEMURA S. Weighted particles in Coulomb collision simulations based on the theory of a cumulative scattering angle[J]. Journal of Computing Physics, 1998, 145:639. [14] DAVIES J R, BELL A R, HAINES M G. Short-pulse high-intensity laser-generated fast electron transport into thick solid targets[J]. Physical Review E, 1997, 56:7193. [15] DAVIES J R. How wrong is collisional Monte Carlo modeling of fast electron transport in high-intensity laser-solid interactions[J]. Physical Review E, 2003, 65:026407. [16] STROZZI D J, TABAK M, LARSON D J, et al. Fast-ignition design transport studies: Realistic electron source, integrated PIC-hydrodynamics, imposed magnetic fields[J]. Physics of Plasmas, 2012, 19:072711. [17] HONRUBIA J J, MEYER-TER-VEHN J. Three-dimensional fast electron transport for ignition-scale inertial fusion capsules[J]. Nuclear Fusion, 2006, 46:L25-8. [18] KAR S, ROBINSON A P L, CARROLL D C, et al. Guiding of relativistic electron beams in solid targets by resistively controlled magnetic fields[J]. Physical Review Letter, 2009, 102:055001. [19] ROBINSON A P L, KEY M H, TABAK M. Focusing of relativistic electrons in dense plasma using a resistivity-gradient-generated magnetic switchyard[J]. Physical Review Letter, 2012, 108:125004. [20] GARDINER C W. Handbook of stochastic methods[M]. Berlin: Springer-Verlag, 1985:121. [21] Van-KAMPEN N G. Stochastic processes in physics and chemistry[M]. Amsterdam: North-Holland, 1992:283. [22] McKENNA P, MACLELLAN D A, BULTLER N M H, et al. Influence of low-temperature resistivity on fast electron transportation in solid: Scaling to fast ignition electron beam parameters[J]. Plasma Physics and Controlled Fusion, 2015, 57:064001-064008. [23] MacLELLAN D A, CARROLL D C, GRAY R J, et al. Tunable Mega-Ampere electron current propagation in solids by dynamic control of lattice melt[J]. Physical Review Letter, 2014, 113:185001. [24] ROBINSON A P L, STROZZI D J, DAVIES J R, et al. Theory of fast electron transport for fast ignition[J]. Nucl Fusion, 2014, 54:054003. [25] SPITZER Jr, RICHARD HARM. Transport phenomena in a completely ionized gas[J]. Physical Review 1953, 89:977. [26] SALZMANN D. Atomic physics in hot plasmas[M]. Oxford University Press, 1998:27-28. [27] MORE R M, WARREN K H, YOUNG D A, et al. A new quotidian equation of state (QEOS) for hot dense matter[J]. Physics of Fluids, 1988, 31:3059. [28] NISHIMUR H, MISHRA R, OHSHIMA S, et al. Energy transport and isochoric heating of a low-Z, reduced-mass target irradiated with a high intensity laser pulse[J]. Physics of Plasmas, 2011, 18:022702. [29] LEE Y T, MORE R M. An electron conductivity model for dense plasmas[J]. Physics of Fluids, 1984, 27:1273. [30] DESJARLAIS M P. Practical improvements to the lee-more conductivity near the metal-insulator transition[J]. Contrib Plasma Phys, 2001, 41:267. [31] VAUZOUR B, DEBAYLE A, VAISSEAU X, et al. Unraveling resistive versus collisional contributions to relativistic electron beam stopping power in cold solid and in warm-dense plasma[J]. Physics of Plasmas, 2014, 21:03310. [32] CHIMIER B, TIKHONCHUK V T, HALLO L. Heating model for metals irradiated by a sub-picosecond laser pulse[J]. Physical Review B, 2007, 75:195124. [33] HANSEN S B, ISAACS W A, STERNE P A, et al. Electrical conductivity calculations from the Purgatorio code[J]. Proceedings of the NEDPC, 2005. [34] EPPERLEIN E M, HAINES M G. Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker-Planck equation[J]. Physics of Fluids, 1986, 29:1029-1041. [35] MAYADAS A F, SHATZKES M, JANAK J F. Electrical resistivity model for polycrystalline films, the case of specular reflection at external surface[J]. Apply Physical Letter, 1969, 14:345. [36] ROBINSON A P, HSCHMITZ L, MCKENNA P. Resistivity of non-crystalline carbon in the 1-100 eV range[J]. New Journal of Physics, 2015, 17:083045. [37] DESJARLAIS M P, KRESS J D, COLLINS L A. Electrical conductivity for warm, dense aluminum plasmas and liquids[J]. Physical Review E, 2002, 66:025401. [38] SOBOLEV A N, MIRZOEV A A. The Kubo-Greenwood calculation of conductivity of the simple and non-simple liquid metals in a wide temperature range[J]. J Phys: Conference Series, 2008, 98:062015. [39] SANDRA K, RONALD R. Transport coefficients for dense metal plasmas[J]. Physical Review E, 2000, 62:7191. [40] ANDRADE X, STRUBBE D, DE-GIOVANNINI U, et al. Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems[J]. Phys Chem Chem Phys, 2015, 17:31371. [41] MARQUES M A, MAITRA N T, NOGUEIRA F M. Fundamentals of time-dependent density functional theory[M]. Heidelberg, Springer, 2012. [42] KOCH WOLFRAM, HOLTHAUSEN MAX C. A chemist's guide to density functional theory[M]. Wiley-VCH Verlag GmbH, 2001. [43] DESILVA A W, KATSOUROS J D. Electrical conductivity of dense copper and aluminum plasmas[J]. Physical Review E, 1998, 57:5945. [44] DESILVA A W, VUNNI G B. Electrical conductivity of carbon plasma[J]. Physical Review E, 2009, 79:036403. [45] DESILVA A W, VUNNI G B. Electrical conductivity of dense Al,Ti,Fe,Ni,Cu,Mo,Ta, and W plasmas[J]. Physical Review E, 2011, 83:037402. [46] BENAGE J F, SHANAHAN W R, MURILLO M S. Electrical resistivity measurements of hot dense aluminum[J]. Physical Review Letter, 1999, 83:2953. [47] YUAN J M. Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture[J]. Physical Review E, 2002, 66:047401. [48] HOU Yong, BREDOW R, YUAN Jianmin, RONALD R. Average-atom model combined with the hypernetted chain approximation applied to warm dense matter[J]. Physical Review E, 2015, 91:033114. [49] JOHNSON WALTER, NILSEN JOSEPH. Average-atom treatment of relaxation time in X-ray Thomson scattering from warm-dense matter[J]. Physical Review E, 2015, 93:033205. [50] MICHAEL E G. Regimes of suprathermal electron transport[J]. Physics of Plasmas, 1995, 2:2796. [51] MCLACHLAN R, QUISPEL R. Splitting methods[J]. Acta Numerica, 2002, 11:341. [52] KAHAN W, LI R. Composition constants for raising the orders of unconventional schemes for ordinary differential equations[J]. Math Comput, 1997, 66:1089. [53] BORIS J P. Relativisitic plasma simulation optimization of a hybrid code[C]. Proceeding of 4th Conference on Numerical Simulation of Plasmas, 1970. [54] ESIRKEPOV T ZH. Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor[J]. Computer Physics Communications, 2001, 135:144. [55] BEG F N, BELL A R, DANGOR A E, et al. A study of picosecond laser-solid interactions up to 1019W·cm-2[J]. Physics of Plasmas, 1997, 4:447. [56] WILKS S C, KRUER W L, TABAK M, et al Absorption of ultra-intense laser pulses[J]. Physical Review Letter, 1992, 69:1383. [57] PING Y, SHEPHERD R, LASINSKI B F. Absorption of short laser pulses on solid targets in the ultrarelativistic regime[J]. Physical Review Letter, 2008, 100:085004. [58] PERROT F, DHARMA M W C. Electrical resistivity of hot dense plasmas[J]. Physical Review A, 1987, 36:238. [59] STEWART J C, PYATT K D. Lowering of ionization potentials in plasmas[J]. Astrophys J, 1996, 144:1203. [60] ECKER G, KROLL W. Lowering of the ionization energy for a plasma in thermodynamic equation[J]. Physics of Fluids, 1962, 6:62. [61] PURCELL EDWARD M. Electricity and magnetism[M]. McGraw-Hill, 1965. [62] ANTIA M. Rational fuction approximations for Fermi-Dirac integrals[J]. Astrophysical Journal Supplement Series, 1993, 84:101-108. [63] MILCHBERG H M, FREEMAN R R, DAVEY S C, et al. Resistivity of a simple metal from room temperature to 106 K[J]. Phys Rev Lett, 1988, 61:2364. [64] FEYNMAN R P, METROPOLIS N, TELLER E. Equations of state of elements basedon the generalized Fermi-Thomas theory[J]. Physical Review, 1949, 75:1561. [65] LIBERMAN D A. Self-consistent field model for condensed matter[J]. Physical Review B, 1979, 20:4981. [66] WILSON B, SONNAD V, STERNE P, ISAACS W. Purgatorio-A new implementation of the Inferno algorithm[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 99:658. [67] BLENSKI T, ISHIKAWA K. Pressure ionization in the spherical ion-cell model of dense plasmas and a pressure formula in the relativistic Pauli approximation[J]. Physical Review E, 1995, 51:4869. [68] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review A, 1965, 140:1133. [69] CEPERLEY D M, ALDER B L. Ground state of the electron gas by a stochastic method[J]. Physical Review Letter, 1980, 45:566-569. [70] PERDEW J P, ZUNGER A. Self-interaction correction to density-functional approximations for many-electron systems[J]. Physical Review B, 1981, 23:5048. [71] PERDEW JOHN P, WANG YUE. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, 1992, 45:13244. [72] TAO Jianmin, PERDEW JOHN P, VIKTOR N, et al. Climbing the ensity functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids[J]. Phys Rev Lett, 2003, 91:146401. [73] ZIMAN J M. A theory of the electrical properties of liquid matals: Themonovalent metals[J]. Philosophical Magazine, 1961, 6:1013. [74] KUBO R. A general expression for the conductivity tensor[J]. Canad J Phys, 1956, 34: 1274. [75] GREENWOOD D A. The Boltzmann equation in the theory of electrical conduction in metals[J]. Proc Phys Soc London, 1958, 715:585. [76] JOHNSON W R. Low-frequency conductivity in the average-atom approximation[J]. High Energy Density Physics, 2009, 5:61. [77] EVANS R, GYORFFY B L, SZABO N, et al. The properties of liquid metals[M]. Takeuchi S, ed. New York:Wiley, 1973. [78] RINKER G A. Electrical conductivity of a strongly coupled plasma[J]. Physical Review B, 1985, 31: 4207. [79] PERROT F, DHARMA-WARDANA M W C. Electrical resistivity of hot dense plasmas[J]. Physical Review A, 1987, 36:238. [80] PERROT F, DHARMA-WARDANA M W C. Theoretical issues in the calculation of the electrical conductivity[J]. International Journal of Thermophysics.1999, 20:1299. [81] YUAN J K, SUN Y S, ZHENG S T. Calculation of the electrical conductivity of strongly coupled plasmas[J]. Physical Review E, 1996, 53:1059. [82] BLANCARD C, FAUSSURIER G. Equation of state and transport coefficients for dense plasmas[J]. Physical Review E, 2004, 69:0164091. [83] FAUSSURIER G, et al. Electrical conductivity of warm expanded Al[J]. Physical Review B, 2006, 73:075106. [84] DHARMA-WARDANA M W C, MURILLO MICHAEL S. Pair-distribution functions of two-temperature two-mass systems: Comparison of molecular dynamics, classical-map hypernetted chain, quantum Monte Carlo,and Kohn-Sham calculations for dense hydrogen[J]. Physical Review E, 2008, 77:026401. |
[1] | Dan DU, Shuai LI, Puqiong YANG, Jun FENG, Dong XIANG, Xueyu GONG. Helicon Waves Propagation and Absorption: Effect of Axial Length of Helical Antenna [J]. Chinese Journal of Computational Physics, 2021, 38(6): 713-721. |
[2] | Shuyu ZHENG, Jiazhen PENG, Xianmei ZHANG, Erbing XUE, Limin YU. Prediction of Energy Confinement Time in Tokamak Based on Neural Networks [J]. Chinese Journal of Computational Physics, 2021, 38(4): 423-430. |
[3] | Yao TAN. Effect of Shear Flow on Secondary Magnetic Islands in DTM at High Magnetic Reynolds Numbers [J]. Chinese Journal of Computational Physics, 2021, 38(3): 343-351. |
[4] | GU Jianfa, GE Fengjun, DAI Zhensheng, ZOU Shiyang. Influence of Capsule Support Tent on ICF Capsule Implosion Performance: Simulation Study [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(6): 631-638. |
[5] | LIU Zuguang, LI Xinxia, YANG Ming. Effect of Lower Hybrid Wave Current Drive with High Component N‖ on EAST [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(4): 467-472. |
[6] | ZHENG Yifeng, WANG Yulei, LIU Jian, QIN Hong. ISSDE: First-principles Implicit Simulations Based on Stratonovich SDE Approach of Coulumb Collision [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(3): 265-279. |
[7] | LI Xuemei, WANG Yuhua. Influence Factors in Two-Dimensional Plasma Density Reconstruction [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(2): 187-193. |
[8] | CHANG Hengxin, XU Zheng, YAO Weipeng, XIE Yu, QIAO Bin. Study on Extreme Plasma Dynamics by Quantum Electrodynamic Particle-in-Cell Simulations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(5): 526-542. |
[9] | ZHANG Hua, WU Sizhong, ZHOU Cangtao, HE Minqing, CAI Hongbo, CAO Lihua, ZHU Shaoping, HE Xiantu. Numerical Method for Relativistic Vlasov Equation in Cartesian-Spherical Coordinate System [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(5): 543-554. |
[10] | ZHANG Hua, WU Sizhong, ZHOU Cangtao, HE Minqing, CAI Hongbo, CAO Lihua, ZHU Shaoping, HE Xiantu. Numerical Method of Relativistic Fokker-Planck Equation for Energy Deposition of Fast Electrons [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(5): 555-562. |
[11] | YU Chengxin, FAN Zhengfeng, LIU Jie, HE Xiantu. Modeling of Shell-mixing into Central Hotspot in Inertial Confinement Fusion Implosion [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(4): 379-386. |
[12] | ZHENG Pingwei, HE Lihua, HUANG Qianhong, DENG Sheng, GONG Xueyu. Electron Cyclotron Wave Heating and Current Drive Simulation Based on Three-dimensional Fokker-Planck Equation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(4): 387-393. |
[13] | CHANG Kai, LI Jinhong, SHEN Huayun, ZHONG Bin. Calculation of Average Thermonuclear Reaction Rate Under Unthermal Balance [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(2): 149-154. |
[14] | GUO Shaodong, ZHANG Mingyu, ZHOU Haibing, XIONG Jun, ZHANG Shudao. Solving Diffusion Equation on Three-Dimensional Non-Conformal Mesh [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(1): 19-28. |
[15] | GU Jianfa, DAI Zhensheng, GU Peijun, YE Wenhua, ZHENG Wudi, ZOU Shiyang. Simulations of Mode-Mode Coupling Between Drive Asymmetry and Outer Surface Roughness in Ignition Capsule Implosion [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 33(6): 645-651. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.