Chinese Journal of Computational Physics ›› 2021, Vol. 38 ›› Issue (6): 713-721.DOI: 10.19596/j.cnki.1001-246x.8323
• Research Reports • Previous Articles Next Articles
Dan DU1, Shuai LI1, Puqiong YANG2, Jun FENG3, Dong XIANG4, Xueyu GONG4,*()
Received:
2020-12-21
Online:
2021-11-25
Published:
2022-04-27
Contact:
Xueyu GONG
CLC Number:
Dan DU, Shuai LI, Puqiong YANG, Jun FENG, Dong XIANG, Xueyu GONG. Helicon Waves Propagation and Absorption: Effect of Axial Length of Helical Antenna[J]. Chinese Journal of Computational Physics, 2021, 38(6): 713-721.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8323
L=4.5 cm | L=9.0 cm | L=13.5 cm | L=18.0 cm | |
P总/kW | 3.156 0 | 7.266 1 | 11.324 2 | 15.437 0 |
P′总/kW | 0.303 4 | 0.698 8 | 0.363 9 | 0.024 4 |
P″总/kW | 2.841 9 | 6.486 6 | 10.912 4 | 15.397 8 |
P+1/kW | 1.234 8 | 2.757 6 | 3.551 8 | 4.308 8 |
P′+1/kW | 0.301 4 | 0.694 9 | 0.362 0 | 0.024 2 |
P″+1/kW | 0.855 7 | 1.997 1 | 3.153 0 | 4.276 7 |
P-1/kW | 1.797 9 | 4.226 4 | 7.361 3 | 10.585 0 |
P′-1/kW | 8.91×10-5 | 1.84×10-4 | 1.36×10-4 | 8.19×10-5 |
P″-1/kW | 1.795 1 | 4.219 2 | 7.354 2 | 10.578 2 |
P′+1/P′总 | 99.34% | 99.44% | 99.48% | 99.18% |
P″-1/P-1 | 99.84% | 99.83% | 99.90% | 99.94% |
P′总/P总 | 9.61% | 9.62% | 3.21% | 0.16% |
P″总/P总 | 90.05% | 89.27% | 96.36% | 99.75% |
Table 1 Power deposition distribution of four helical antennas with different axial length
L=4.5 cm | L=9.0 cm | L=13.5 cm | L=18.0 cm | |
P总/kW | 3.156 0 | 7.266 1 | 11.324 2 | 15.437 0 |
P′总/kW | 0.303 4 | 0.698 8 | 0.363 9 | 0.024 4 |
P″总/kW | 2.841 9 | 6.486 6 | 10.912 4 | 15.397 8 |
P+1/kW | 1.234 8 | 2.757 6 | 3.551 8 | 4.308 8 |
P′+1/kW | 0.301 4 | 0.694 9 | 0.362 0 | 0.024 2 |
P″+1/kW | 0.855 7 | 1.997 1 | 3.153 0 | 4.276 7 |
P-1/kW | 1.797 9 | 4.226 4 | 7.361 3 | 10.585 0 |
P′-1/kW | 8.91×10-5 | 1.84×10-4 | 1.36×10-4 | 8.19×10-5 |
P″-1/kW | 1.795 1 | 4.219 2 | 7.354 2 | 10.578 2 |
P′+1/P′总 | 99.34% | 99.44% | 99.48% | 99.18% |
P″-1/P-1 | 99.84% | 99.83% | 99.90% | 99.94% |
P′总/P总 | 9.61% | 9.62% | 3.21% | 0.16% |
P″总/P总 | 90.05% | 89.27% | 96.36% | 99.75% |
1 |
CHENG Yuguo, CHENG Mousen, WANG Moge, et al. Numerical study on the effects of magnetic field on helicon plasma waves and energy absorption[J]. Acta Physica Sinica, 2014, 63 (3): 035203.
DOI |
2 |
YANG Xiong, CHENG Mousen, WANG Moge, et al. Three-dimensional direct numerical simulation of helicon discharge[J]. Acta Physica Sinica, 2017, 66 (2): 025201.
DOI |
3 |
ZHAO Gao, XIONG Yuqing, MA Chao, et al. Characterization of plasma in a short-tube helicon source[J]. Acta Physica Sinica, 2014, 63 (23): 235202.
DOI |
4 |
BOSWELL R W. Very efficient plasma generation by whistler waves near the lower hybrid frequency[J]. Plasma Physics and Controlled Fusion, 1984, 26 (10): 1147- 1162.
DOI |
5 |
CHEN F F. Helicon discharges and sources: A review[J]. Plasma Sources Science and Technology, 2015, 24 (1): 014001.
DOI |
6 |
CHEN F F, BOSWELL R W. Helicons-the past decade[J]. IEEE Transactions Plasma Science, 1997, 25 (6): 1245- 1257.
DOI |
7 |
NIEMI K, KRAEMER M. Helicon mode formation and radio frequency power deposition in a helicon-produced plasma[J]. Physics of Plasmas, 2008, 15 (7): 073503.
DOI |
8 |
CHEN F F. Plasma ionization by helicon waves[J]. Plasma Physics and Controlled Fusion, 1991, 33 (4): 339- 364.
DOI |
9 |
KUDRIN A V, OSTAFIYCHUK O M, ZABORONKOVAC T M. Excitation of whistler waves below the lower hybrid frequency by a loop antenna located in an enhanced density duct[J]. Physics of Plasmas, 2017, 24 (8): 082109.
DOI |
10 |
ARNUSH D, CHEN F F. Generalized theory of helicon waves Ⅱ: Excitation and absorption[J]. Physics of Plasmas, 1998, 5 (5): 1239- 1254.
DOI |
11 |
KAENSKI I V, BORG G G. An evaluation of different antenna designs for helicon wave excitation in a cylindrical plasma source[J]. Physics of Plasmas, 1996, 3 (12): 4396- 4409.
DOI |
12 |
PORTE L, YUN S M, ARNUSH D, et al. Superiority of half-wavelength helicon antennae[J]. Plasma Sources Science and Technology, 2003, 12 (2): 287- 293.
DOI |
13 |
ELLINGBOE A R, BOSWELL R W. Capacitive, inductive and helicon wave modes of operation of a helicon plasma source[J]. Physics of Plasmas, 1996, 3 (7): 2797- 2804.
DOI |
14 |
SCHNEIDER D A, BORG G G, KAMENSKI I V. Measurements and code comparison of wave dispersion and antenna radiation resistance for helicon waves in a high density cylindrical plasma source[J]. Physics of Plasmas, 1999, 6 (3): 703- 712.
DOI |
15 |
BORG G G, BLACKWELL B D, HAMBERGER S M, et al. The H-1 radio frequency system and an initial study of plasma formation[J]. Fusion Engineering and Design, 1995, 26 (1-4): 191- 201.
DOI |
16 |
MILJAK D G, CHEN F F. Helicon wave excitation with rotating antenna fields[J]. Plasma Sources Science and Technology, 1998, 7 (1): 61- 74.
DOI |
17 | LIEBERMANN M A, LICHTENBER A J. Principle of plasma discharge and material processing[M]. New York: Wiley Interscience, 2005: 518 |
18 |
WARMER F, BEIDLER C D, DINKLAGE A, et al. From W7-X to a HELIAS fusion power plant: Motivation and options for an intermediate step burning-plasma stellarator[J]. Plasma Physics and Controlled Fusion, 2016, 58 (7): 074006.
DOI |
19 |
HELANDER P, BEIDLER C D, BIRD T M, et al. Stellarator and tokamak plasmas: A comparison[J]. Plasma Physics and Controlled Fuson, 2012, 54 (12): 124009.
DOI |
20 |
WATARI T. RF heating in stellarators[J]. Plasma Physics and Controlled Fusion, 1998, 40 (8A): A13- A34.
DOI |
21 | LIU Zuguang, LI Xinxia, YANG Ming. Effect of lower hybrid wave current drive with high component N|| on EAST[J]. Chinese Journal of Computational Physics, 2020, 37 (4): 467- 472. |
22 | ZHA Xuejun, ZHONG Dejun, WANG Fuqiong, et al. Monte-Carlo modelling of impurity transport in EAST tokamak[J]. Chinese Journal of Computational Physics, 2015, 32 (6): 715- 721. |
23 | DU Dan, GONG Xueyu, CAO Jinjia, et al. Effect of two strip antenna distance on plasma coupling characteristics[J]. Chinese Journal of Computational Physics, 2012, 29 (3): 389- 393. |
24 | YU Jiawen, KUANG Guangli, DING Bojiang, et al. Analysis of eddy current and electro-magnetic forces at the lower hybrid wave launching antenna on the super conducting tokamak HT-7[J]. Chinese Journal of Computational Physics, 2001, 18 (4): 346- 350. |
25 |
RUDAKOV D L, SHATS M G, HARRIS J H, et al. Dynamic behaviour of the low-to-high confinement transitions in the H-1 heliac[J]. Plasma Physics and Controlled Fusion, 2001, 43 (4): 559- 570.
DOI |
26 |
SHATS G, RUDAKOV D L, BLACKWELL B D, et al. Improved particle confinement mode in the H-1 heliac plasma[J]. Physical Review Letters, 1996, 77 (20): 4190- 4193.
DOI |
27 | JAUN A, APPERT K, VACLAVIK J, et al. Global waves in resistive and hot tokamak plasmas[J]. Computer Physics Communications, 1995, 92 (2/3): 153- 187. |
28 |
KAMENSKI I V, BORG G G. A 1 D cylindrical kinetic wave code for helicon plasma sources[J]. Computer Physics Communications, 1998, 113 (1): 10- 32.
DOI |
29 | HUBA J D. NRL plasma formulary[M]. Washington DC: Naval Research Lab, 2013: 31- 35. |
30 | KAMENSKI I V. Computational study of antenna coupling and wave propagation in helicon plasma sources[D]. Canberra: Australian National University, 1998. |
31 |
SHAMRAI K P, TARANOV V B. Resonances and anti-resonances of a plasma column in a helicon plasma source[J]. Physics Letters A, 1995, 204 (2): 139- 145.
DOI |
[1] | Jiali ZHU, Yueqiang SHANG. A Parallel Two-level Stablized Finite Element Algorithm for Incompressible Flows [J]. Chinese Journal of Computational Physics, 2022, 39(3): 309-317. |
[2] | Hongming LI, Maosheng LI. Effect of Irradiation on Mechanical Properties of Polycrystalline Copper: Crystal Plasticity Finite Element Method [J]. Chinese Journal of Computational Physics, 2022, 39(1): 6-16. |
[3] | Puyang GAO. Numerical Investigation of Gas Entrapment in Polymer Filling Process [J]. Chinese Journal of Computational Physics, 2021, 38(6): 693-706. |
[4] | DING Qi, SHANG Yueqiang. Parallel Finite Element Algorithms Based on Two-grid Discretization for Time-dependent Navier-Stokes Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(1): 10-18. |
[5] | ZHANG Qingfu, YAO Jun, HUANG Zhaoqin, LI Yang, WANG Yueying. A Multiscale Deep Learning Model for Fractured Porous Media [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(6): 665-672. |
[6] | WEN Xiaojing, QU Yu, CHEN Chengzhao. Numerical Study of Circular Dichroism Generated by Bilayered Split Rings [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(3): 357-362. |
[7] | CHEN Gong, WANG Yizheng, WANG Ye, ZHANG Chunyu. Reduced Basis Finite Element Method for Fast Solution of Parameterized Partial Differential Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(5): 515-524. |
[8] | YU Chenyang, FAN Xuanhua, WANG Keying, XIAO Shifu. Parallel Computing of Multipoint-Base-Excited Harmonic Response with PANDA Platform [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(4): 443-450. |
[9] | LI Lingxiao. Parallel Finite Element Computation of Incompressible Viscous Flows Based on Block Preconditioning Strategy [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(2): 151-160. |
[10] | GE Zhihao, WU Huili. A Penalized Finite Element Method of Nonlocal Diffusion Problem with Volume Constraints [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(2): 161-168. |
[11] | TANG Qiuming, ZHEN Tianyi, LI Danyun, GAO Qiang. Mechanical Properties of Graphene/Hydroxyapatite Composite Materials: Numerical Study [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(1): 71-76. |
[12] | YANG Xiaocheng, SHANG Yueqiang. Two-level Subgrid Stabilized Methods for Navier-Stokes Equations at High Reynolds Numbers [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(6): 657-665. |
[13] | ZHAO Guozhong, YU Xijun, GUO Huaimin. A Discontinuous Petrov-Galerkin Method for Two-dimensional Compressible Gas Dynamic Equations in Lagrangian Coordinates [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(3): 294-308. |
[14] | LIANG Yanping, DING Xin, CHEN Yuanqi, YU Honghao. Application of Scaled Boundary Finite Element Method in Electromagnetic Field Problems [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(2): 205-213. |
[15] | YANG Pu, NIU Hongpan, XIAO Shifu. A Generalized Finite Element for Plane-Strain Problem [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 33(3): 358-366. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.