[1] CHEN H, LIANG S M. Flow visualization of shock/water column interactions[J]. Shock Waves, 2008, 17(5):309-321. [2] JIA Z P, SUN Y T. A 2D cell-centered MMALE method based on MOF interface reconstruction[J]. Chinese Journal of Computational Physics, 2016, 33(5):523-538. [3] ZHOU J, XU S L. Numerical inlet and outlet boundary conditions in SPH method[J].Chinese J Comput Phys,2016,33(5):516-522. [4] FEDKIW R P, ASLAM T, MERRIMAN B, et al. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method)[J]. Journal of Computational Physics, 1999, 152(2):457-492. [5] FEDKIW R P, MARQUINA A, MERRIMAN B. An isobaric fix for the overheating problem in multimaterial compressible flows[J]. Journal of Computational Physics, 1999, 148(2):545-578. [6] FEDKIW R P. Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method[J]. Journal of Computational Physics, 2002, 175(1):200-224. [7] LIU T G, KHOO B C, YEO K S. Ghost fluid method for strong shock impacting on material interface[J]. Journal of Computational Physics, 2003, 190(2):651-681. [8] WANG C W, LIU T G, KHOO B C. A real ghost fluid method for the simulation of multimedium compressible flow[J]. SIAM Journal on Scientific Computing, 2006, 28(1):278-302. [9] SAMBASIVAN S K, UDAYKUMAR H S. Sharp interface simulations with local mesh refinement for multi-material dynamics in strongly shocked flows[J]. Computers & Fluids, 2010, 39(9):1456-1479. [10] JIANG L, GE H, FENG C L, et al. Numerical simulation of underwater explosion bubble with a refined interface treatment[J]. Science China:Physics, Mechanics & Astronomy, 2015, 58(4):1-10. [11] 徐爽. 大密度比水气多介质问题数值模拟与高阶DSD方法研究[D]. 南京:南京航空航天大学, 2014. [12] 徐爽, 赵宁, 王春武,等. 水/气多介质问题的界面处理方法[J]. 爆炸与冲击, 2015, 35(3):326-334. [13] ALLAIRE G, CLERC S, KOKH S. A five-equation model for the simulation of interfaces between compressible fluids[J]. Journal of Computational Physics, 2002, 181(2):577-616. [14] SAMBASIVAN S K, UDAYKUMAR H S. Ghost fluid method for strong shock interactions Part 1:Fluid-fluid interfaces[J]. AIAA Journal, 2009, 47(12):2907-2922. [15] SAMBASIVAN S K, UDAYKUMAR H S. Ghost fluid method for strong shock interactions Part 2:Immersed solid boundaries[J]. AIAA Journal, 2009, 47(12):2923-2937. [16] SAUREL R, ABGRALL R. A simple method for compressible multifluid flows[J]. SIAM Journal on Scientific Computing, 1999, 21(3):1115-1145. [17] OSHER S, FEDKIW R P. Level set methods:An overview and some recent results[J]. Journal of Computational Physics, 2001, 169(2):463-502. [18] LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1):200-212. [19] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[R]. Institute for Computer Applications in Science and Engineering, Hampton VA, 1995. [20] JIANG G S, PENG D. Weighted ENO schemes for Hamilton-Jacobi equations[J]. SIAM Journal on Scientific Computing, 2000, 21(6):2126-2143. [21] SHU C W. High order weighted essentially nonoscillatory schemes for convection dominated problems[J]. SIAM Review, 2009, 51(1):82-126. [22] SHU C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws[M]//Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Springer Berlin Heidelberg, 1998:325-432. [23] GOTTLIEB S, SHU C W. Total variation diminishing Runge-Kutta schemes[J]. Mathematics of Computation of the American Mathematical Society, 1998, 67(221):73-85. [24] 赵琪. 激波和界面相互作用的数值研究[D].合肥:中国科学技术大学,2017. |