CHINESE JOURNAL OF COMPUTATIONAL PHYSICS ›› 2018, Vol. 35 ›› Issue (6): 720-728.DOI: 10.19596/j.cnki.1001-246x.7747
Previous Articles Next Articles
CHEN Chuntian1, CONG Shan1, CHEN Hongfei1, WANG Lei1, LI Kai2
Received:
2017-08-29
Revised:
2017-10-25
Online:
2018-11-25
Published:
2018-11-25
CLC Number:
CHEN Chuntian, CONG Shan, CHEN Hongfei, WANG Lei, LI Kai. First-Principles Study of Electronic Structure and Optical Properties of Bi Doped ZnO[J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(6): 720-728.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.7747
[1] BENRAMACHE S, ARIF A, BELAHSSEN O, et al. Study on the correlation between crystallite size and optical gap energy of doped ZnO thin film[J]. Journal of Nanostructure in Chemistry, 2013, 3:80. [2] BENHARRATS F, ZITOUNI K, KADRI A, et al. Determination of piezoelectric and spontaneous polarization fields in quantum wells grown along the polar<0001> direction[J]. Superlattices and Microstructures, 2010, 47:592-596. [3] AOUN Y, BENHAOUA B, GASMI B, et al. Study the structural, optical and electrical properties of sprayed zinc oxide (ZnO) thin films before and after annealing temperature[J]. Main Group Chemistry, 2015, 14:27-33. [4] BELAHSSEN O, BENRAMACHE S, BENHAOUA B. Effect of Urbach energy with precursor molarity on the crystallite size in undoped ZnO thin film[J]. Main Group Chemistry, 2014, 13:343-352. [5] YILMAZ M. Investigation of characteristics of ZnO:Ga nanocrystalline thin films with varying dopant content[J]. Materials Science in Semiconductor Processing, 2015, 40:99-106. [6] KUSHWAHA S, BAHADUR L. Studies of structural and morphological characteristics of flower-like ZnO thin film and its application as photovoltaic material[J]. Optik, 2013, 124:5696-5701. [7] AYDIN H, EL-NASSER H M, AYDIN C, et al. Synthesis and characterization of nanostructured undoped and Sn-doped ZnO thin films via sol-gel approach[J]. Applied Surface Science, 2015, 350:109-114. [8] ZHONG H Z, ZHOU Y, YANG Y, et al. Synthesis of type Ⅱ CdTe-CdSe nanocrystal heterostructured multiple-branched rods and their photovoltaic applications[J]. J Phys Chem C, 2007, 111:6538-6543. [9] ZHANG C Y, YEH H C, KUROKI M T, et al. Single-quantum-dot-based DNA nanosensor[J]. Nat Mater, 2005, (4):826-830. [10] ZHONG J B, LI J Z, LU Y, et al. Fabrication of Bi3+-doped ZnO with enhanced photocatalytic performance[J]. Appl Surf Sci, 2012, 258:4929-4933. [11] WANG J, SUN X, WEI A, et al. Zinc oxide nanocomb biosensor for glucose detection[J]. Appl Phys Lett, 2006, 88:233106. [12] HAN Weichao, ZHANG Song, OU Manlin, et al. First-principles of Fe-S Co-doped wurtzite ZnO[J]. Laser & Optoelectronics Progress, 2017, 54:011601. [13] LIN J M, CHENG C L, LIN H Y, et al. Giant enhancement of band edge emission in ZnO and SnO nanocomposites[J]. Opt Lett, 2006, 31:3173-3175. [14] SCHMIDT-MENDE L, MACMANUS-DRISCOLL J L. ZnO-nanostructures, defects, and devices[J]. Mater Today, 2007, 10(5):40-48. [15] CHOUIKH F, BEGGAH Y, AIDA M S. Optical and electrical properties of Bi doped ZnO thin films deposited by ultrasonic spray pyrolysis[J]. J Mater Sci Mater Electron, 2011, 22:499-505. [16] XU C, CHUN J, KIM D E. Electrical properties and near band edge emission of Bi-doped ZnO nanowires[J]. Appl Phys Lett, 2007, 90:083113. [17] SHEN G, BANDO Y, LEE C J. Synthesis and evolution of novel hollow ZnO urchins by a simple thermal evaporation process[J]. J Phys Chem B, 2005, 109:10578-10583. [18] LI Lei, LI Dan, LIU Shiyong, et al. Electronic properties of Mn doping ZnS(001) surfaces[J]. Chinese J Comput Phys, 2010, 27(2):293-298. [19] SHARMA V, PRASAD M, JADKAR S, et al. Influence of carbon and phosphorus doping on electronic properties of ZnO[J]. J Mater Sci:Mater Electron, 2016,27:12318-12322. [20] YU Changlin, YANG Kai, YU Jimei, et al. Effects of rare earth Ce doping on the structure and photocatalytic performance of ZnO[J]. Acta Physico-Chimica Sinica, 2011, 27(2):505-512. [21] ZHANG Jinkui, DENG Shenghua, JIN Hui, et al. First-principle study on the electronic structure and p-type conductivity of ZnO[J]. Acta Phys Sin, 2007, 56(9):5371-5375. [22] YU You, SUN Jian, ZHAO Guodong, et al. Study of the electronic structure and optical properties of ZnO doped with Al[J].Journal of Chengdu University of Informantion Technology, 2016,31(5):544-548. [23] SHEN Yibin, ZHOU Xun, XU Ming, et al. Electronic structure and optical properties of ZnO doped with transition metals[J].Acta Phys Sin, 2007, 56(6):3440. [24] KARAMAT S, RAWAT R S, LEE P, et al. Structural, elemental, optical and magnetic study of Fe doped ZnO and impurity phase formation[J]. Progress in Natural Science:Materials International, 2014, 24(2):142-149. [25] WANG Yankun, LI Chengwei, ZHANG Jianmin. Preparation and optical properties of Co-doped ZnO nanorods by electro position method[J]. Semiconductor Optoelectronics, 2011, 33(4):536-542. [26] LIN Lin, ZHAO Chunwang, YING Chun. First-principles study on electronic structure and optical properties of wurtzite ZnO doped with Ca[J]. Journal of Functional Material, 2013, 44(4):480-482. [27] CHEN Kun, FAN Guanghan, ZHANG Yong, et al. First-principle caculation of nitrogen-doped p-type ZnO[J]. Acta Phys-Chim Sin, 2008, 24(1):61-66. [28] HAN Weichao, ZHANG Song, DUAN Guanjie, et al. Study on electronic structure and optical properties of s-doped ZnO using first-principles[J]. Laser & Optoelectronics Progress, 2014, 51:071604. [29] LIU Yi. First-principles study of (Ni,Co) single-doped and Al-N co-doped ZnO[D].Inner Mongolia:Inner Mongolia University of Technology, 2013:10-15. [30] HU Xiaoying, TIAN Hongwei, SONG Lijun, et al. First-principles study of Li-N and Li-2N codoped p-type ZnO[J].Acta Phys Sin, 2012, 61(4):047102. [31] SINGH B K, AGARWAL L,TRIPATHI S. Fabrication and characterization of Cu doped ZnO/Bi doped ZnO nanolaminates as mirror for application in optical devices[J]. IEEE Transactions on Nanotechnology, 2017, 16(2):203-208. [32] SINGH B K, TRIPATHI S. Influence of Bi concentration on structural and optical properties of Bi doped p-type ZnO thin films prepares by sol-gel method[J]. J Mater Sci:Mater Electron, 2016, 27:2360-2366. [33] KESKENLER E F, AYDIN S, TURGUT G, et al. Optical and structural properties of bismuth doped ZnO thin films by sol-gel method:Urbach rule as a function of crystal defects[J]. Acta Physica Polonica A, 2014, 126(3):782-786. [34] CHANDRABOSS V L, NATANAPATHAML, KARTHIKEYAN B, et al. Effect of bismuth doping on the ZnO nanocomposite material and study of its photocatalytic activity under UV-light[J]. Materials Research Bulletin, 2013, 48(10):3707-3712. [35] MAITRI M, THUSHARA K S, et al. Electronic structure and catalytic study of solid solution of GaN in ZnO[J]. Chem Mater, 2009, 21:2973-2979. [36] PLESKOV Y V. Sov eletrochem[M]. 1981:17. [37] DAKHEL A A, EL-HILO M. Ferromagnetic nanocrystalline Gd-doped ZnO powder synthesized by coprecipitation[J]. J Appl Phys, 2010, 107(12):123905. [38] SATO J, KOBAYASHI H, INOUE Y. Photocatalytic activity for water decomposition of indates with octahedrally coordinated d10 configuration Ⅱ. Roles of geometric and electronic structures[J]. J Phys Chem B, 2003, 107(31):7970-7975. [39] PRAKASH T, NERI G, BONAVITA A, et al. Structure,morphological and optical properties of Bi-doped ZnO nanoparticles synthesized by a microwave irradiation method[J]. J Mater Sci:Mater Electron, 2015, 26:4913-4921. [40] WU Y X, ZHANG H, HAN L. Influence of Sc doping concentration on electronic structure and optical properties of ZnO[J]. Journal of Atomic Molecular Physics, 2011, 28:749-754. [41] WU Guohao, ZHENG Shukai, LIU Lei, et al. First-principles study on W-S co-doped anatase titanium dioxide[J]. Acta Phys Sin, 2012, 61(22):223101. [42] YU Zemin, WEI Shanshan, CHU Xianchen. Study on the electronic structure of Fe-N element doped ZnO[J]. Journal of Harbin University of Science and Technology, 2014, 19(4):63-66. [43] ZHAO Yanan, WANG Sheng, LI Meizhu. First principle calculation of Co doped ZnO[J]. Journal of Xi'an Technological University, 2015, 35(8):664-667. [44] PFUNER F, DEGIORGI L, SHIN K Y, et al. Optical properties of the charge-density-wave polychalcogenide compounds R2Te5(R=Nd, Sm and Gd)[J]. Eur Phys J B, 2008, 63:11-16. [45] WU Yuxi, HU Zhixiang, et al. Electronic structure and optical properties of rare earth element(Y, La) doped in ZnO[J]. Acta Phys Sin, 2011, 60(1):017101. [46] LIU Xuechao, SHI Erwei, et al. Magnetic and optical properties of Co doped ZnO powders synthesized by solid-state reaction[J]. Acta Phys Sin, 2006, 55(5):2557. [47] DUAN M Y, XU M, ZHOU H P, et al. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N[J]. Acta Phys Sin, 2007,56(9):5359. [48] GUAN Li, LI Qing, et al. First-principles study of the optical properties of ZnO doped with Al, Ni[J]. Acta Phys Sin, 2009, 58(8):5624. [49] LU J G, FUJITA S. Carrier concentration dependence of band gap shift in n-type ZnO:Al films[J]. J Appl Phys, 2007, 101:083705. [50] SHI Aman, QU Shixian. Electronic structure and optical properties of Mg doped ZnO by first-principles calculation[J]. Journal of Shanxi Normal University(Nature Science Edition), 2012, 40(4):24-29. |
[1] | Yong FANG, Yongzhong JIN, Jian CHEN, Hongxiang ZONG, Liying ZHANG. Experimental and Simulation Studies on Relation Between Graphene Thickness and Its Force-distance Curve [J]. Chinese Journal of Computational Physics, 2021, 38(4): 441-446. |
[2] | Yuxing YAN, Juexuan ZHANG, Shuai ZHENG, Fan WANG, Linqiang XIONG. First-principles Study of Electronic Structure and Optical Properties of ZnNb2O6 with Interstitial Atoms [J]. Chinese Journal of Computational Physics, 2021, 38(4): 447-455. |
[3] | Jing PAN, Guohua SHEN. Enhanced Photocatalytic Activity of ZnO for Water-splitting with Isovalent Anion-Cation Codoping: First-principles Calculations [J]. Chinese Journal of Computational Physics, 2021, 38(3): 371-378. |
[4] | ZHANG Le, SUN Bo, SONG Haifeng. First-principles Study of Hydrogen Behaviors in Plutonium Oxides [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(5): 595-602. |
[5] | PENG Junhui. First-principles Study on Structures and Mechanical Properties of Ternary Layered Ceramics M-Al-N (M=Ti, Zr, Hf) [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(5): 603-611. |
[6] | LI Lin, SUN Yuxuan, SUN Weifeng. Electronic Structure and Electrochromic Property of Sulvanite Compounds: A First-principles Study [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(4): 488-496. |
[7] | WEN Shumin, YAO Shiwei, ZHAO Chunwang, WANG Xijun, LI Jijun. Effect of Strain on Electronic Structure and Optical Properties of Wurtzite GaN [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(1): 119-126. |
[8] | XIONG Zonggang, DU Juan, ZHANG Xianzhou. Acceptor and Donor Impurity States in Group V and VII Atom-doped Two-dimensional GeSe Monolayer [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(6): 733-741. |
[9] | QIN Ping, GAO Zhenbang, LIU Haidi, CHEN Yingcai. First-principles Study of Transition Metal Monoboride TMB [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(4): 491-497. |
[10] | LIU Huazhong, LUO Chunxia. First Principles Study of HCHO Adsorption on Hydroxylated TiO2-B(100) Surfaces [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(3): 363-378. |
[11] | XU Jian, DU Chengxu, DU Yingyan, JIA Qian, LIU Yanghua, WU Zhimin. First-principles Calculations of Magnetoelectric Properties of New Diluted Magnetic Semiconductor Mn-doped LiZnN [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(6): 711-719. |
[12] | TIAN Zhuangzhuang, ZHOU Xiaoping, SONG Guolin. First-principles Calculation of Li Thin Films: Quantum Size Effects and Adsorption of Atomic Hydrogen [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(6): 729-736. |
[13] | TAN Junhua, PENG Junhui. First-Principles Study on Structure and Properties of Graphite Intercalation Compound HfC2 [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(5): 613-618. |
[14] | CAI Lugang. A First-Principles Study on Electronic and Optical Properties of Distorted Perovskite DyMnO3 [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(3): 350-356. |
[15] | WANG Wenhua, ZHAO Guojun, WANG Shudong. First-Principles Study of Thermoelectric Transport Properties of β-Antimonene [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(3): 365-372. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.