Chinese Journal of Computational Physics ›› 2021, Vol. 38 ›› Issue (3): 289-300.DOI: 10.19596/j.cnki.1001-246x.8264
• Research Reports • Previous Articles Next Articles
Qin LOU1,2(), Sheng TANG1,2, Haoyuan WANG1,2
Received:
2020-08-24
Online:
2021-05-25
Published:
2021-09-30
CLC Number:
Qin LOU, Sheng TANG, Haoyuan WANG. Numerical Simulation of Bubble Dynamics in Porous Media with a Lattice Boltzmann Large Density Ratio Model[J]. Chinese Journal of Computational Physics, 2021, 38(3): 289-300.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8264
理论值θ0/° | 30 | 60 | 90 | 120 | 150 |
测量值θ/° | 31.98 | 60.16 | 89.64 | 120.32 | 151.43 |
Table 1 Theoretical contact angle and measured contact angle
理论值θ0/° | 30 | 60 | 90 | 120 | 150 |
测量值θ/° | 31.98 | 60.16 | 89.64 | 120.32 | 151.43 |
1 |
RAN B, HADI N. Molecular simulation of the constant composition expansion experiment in shale multi-scale systems[J]. Fluid Phase Equilibria, 2019, 495 (2): 59- 68.
DOI |
2 | ZENG B, BAI Y, MENG W, et al. Forecasting the output of shale gas in China using an unbiased grey model and weakening buffer operator[J]. Energy, 2018, 151 (2): 238- 249. |
3 |
YI J, XING H. Pore-scale simulation of effects of coal wettability on bubble-water flow in coal cleats using lattice Boltzmann method[J]. Chemical Engineering Science, 2017, 161, 57- 66.
DOI |
4 |
ZHAO S, LU X, LI Q, et al. Thermal-fluid coupling analysis of oil shale pyrolysis and displacement by heat-carrying supercritical carbon dioxide[J]. Chemical Engineering Journal, 2020, 394, 125037.
DOI |
5 |
LIU H, RAO X, XIONG H. Evaluation of CO2 sequestration capacity in complex-boundary-shape shale gas reservoirs using projection-based embedded discrete fracture model(pEDFM)[J]. Fuel, 2020, 277, 118201.
DOI |
6 |
SHI J, MA Q, CHEN Z. Numerical study on bubble motion in pore structure under microgravity using the Lattice Boltzmann Method[J]. Microgravity Science and Technology, 2019, 31 (2): 207- 222.
DOI |
7 |
ROOSEVELT S H, CORAPCIOGLU M Y. Air bubble migration in a granular porous medium: Experimental studies[J]. Water Resources Research, 1998, 34 (5): 1131- 1142.
DOI |
8 | CORAPCIOGLU M Y, CIHAN A, DRAZENOVIC M. Rise velocity of an air bubble in porous media: Theoretical studies[J]. Water Resources Research, 2004, 40 (4): W04214. |
9 |
MA Y, KONG X Z, SCHEUERMANN A, et al. Microbubble transport in water-saturated porous media[J]. Water Resources Research, 2015, 51 (6): 4359- 4373.
DOI |
10 |
KORNEV K G, NEIMARK A V, ROZHKOV A N. Foam in porous media: Thermodynamic and hydrodynamic peculiarities[J]. Advances in Colloid and Interface Science, 1999, 82 (1-3): 127- 187.
DOI |
11 |
GHASEMIAN S, AHMADZADEGAN A, CHATZIS L. Bubble migration velocity in a uniform pore network[J]. Transport in Porous Media, 2019, 129 (3): 811- 836.
DOI |
12 |
AHAMMAD M J, ALAM J M, RAHMAN M A, et al. Numerical simulation of two-phase flow in porous media using a wavelet based phase-field method[J]. Chemical Engineering Science, 2017, 173, 230- 241.
DOI |
13 | LU M, DONG B, ZHANG Y, et al. Numerical simulation of free rising of bubbles in a tube with fins using front tracking method[J]. Chinese Journal of Computational Physics, 2018, 35 (1): 47- 54. |
14 |
LAFMEJANI S S, OLESEN A C, KAR S K. VOF modelling of gas-liquid flow in PEM water electrolysis cell micro-channels[J]. International Journal of Hydrogen Energy, 2017, 42 (26): 16333- 16344.
DOI |
15 |
TIAN F, FAN H, MEI D. Discrete element study of bubble behaviors in type D particle fluidization with and without interparticle cohesive forces[J]. Granular Matter, 2018, 20 (4): 61.
DOI |
16 |
QIAN Y H, D'HUMIERES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics Letters, 1992, 17 (6): 479- 484.
DOI |
17 |
CHEN S, DOOLEN G D. Lattice Boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics, 1998, 30, 329- 364.
DOI |
18 | 郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京: 科学出版社, 2009. |
19 |
SANKSRANARAYANAN K, SHAN X, KEVREKIDIS I G, et al. Bubble flow simulations with the lattice Boltzmann method[J]. Chemical Engineering Science, 1999, 54 (21): 4817- 4823.
DOI |
20 | HU Y, SUN T. Three-dimensional numerical simulation of dynamics characteristics of two rising bubbles with lattice Boltzmann method[J]. Chinese Journal of Computational Physics, 2020, 37 (3): 277- 283. |
21 | SUN T, LIU Z, FANG W, et al. Three-dimensional numerical simulation of vapor bubble rising in superheated liquid by lattice Boltzmann method[J]. Chinese Journal of Computational Physics, 2019, 36 (6): 659- 664. |
22 | LOU Q, ZANG C, WANG H, et al. Interfacial dynamics of immiscible gas-liquid two-phase flow for CO2 in microchannel: Lattice Boltzmann method[J]. Chinese Journal of Computational Physics, 2019, 36 (2): 153- 164. |
23 |
LOU Q, LI T, YANG M. Lattice Boltzmann simulations of rising bubble driven by buoyancy in a complex microchannel[J]. Acta Physica Sinica, 2018, 67 (23): 234701.
DOI |
24 |
HE X, CHEN S, ZHANG R. A Lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability[J]. Journal of Computational Physics, 1999, 152 (2): 642- 663.
DOI |
25 |
LOU Q, LI T, YANG M. Numerical simulation of the bubble dynamics in a bifurcated micro-channel using the lattice Boltzmann method[J]. Journal of Applied Physics, 2019, 126 (3): 034301.
DOI |
26 |
ANGELOPOULOS A D, PAUNOV V N, BURGANOS V N, et al. Lattice Boltzmann simulation of nonideal vapor-liquid flow in porous media[J]. Physical Review E, 1998, 57 (3): 3237- 3245.
DOI |
27 | PAN C, HILPERT M, MILLER C T. Lattice-Boltzmann simulation of two-phase flow in porous media[J]. Water Resources Research, 2004, 40 (1): W01501. |
28 | TANG G, TAO W, HE Y. Gas slippage effect on microscale porous flow using the lattice Boltzmann method[J]. Physical Review E, 2005, 72 (5): 056301. |
29 | WANG H, CHAI Z, GUO Z. Lattice Boltzmann simulation of gas transfusion in compact porous media[J]. Chinese Journal of Computational Physics, 2009, 26 (3): 389- 395. |
30 |
LIANG H, XU J, CHEN J, et al. Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows[J]. Physical Review E, 2018, 97 (3): 033309.
DOI |
31 |
ZIEGLER D P. Boundary conditions for lattice Boltzmann simulations[J]. Journal of Statistical Physics, 1993, 71 (5-6): 1171- 1177.
DOI |
32 |
DING H, SPELT P D M. Wetting condition in diffuse interface simulations of contact line motion[J]. Physical Review E, 2007, 75 (4): 046708.
DOI |
33 |
SHAN X, CHEN H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation[J]. Physical Review E, 1994, 49 (4): 2941- 2948.
DOI |
34 |
GUNSTENSEN A K, ROTHMAN D H. Lattice Boltzmann model of immiscible fluids[J]. Physical Review E, 1991, 43 (8): 4320- 4327.
DOI |
35 |
SWIFT M R, ORLANDINI E, OSBORN W R, et al. Lattice Boltzmann simulations of liquid-gas and binary fluid systems[J]. Physical Review E, 1996, 54 (5): 5041- 5052.
DOI |
36 |
HE X, LUO L. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation[J]. Physical Review E, 1997, 56 (6): 6811- 6817.
DOI |
37 |
SHI B, GUO Z. Lattice Boltzmann model for nonlinear convection-diffusion equations[J]. Physical Review E, 2009, 79 (1): 016701.
DOI |
38 |
WANG H, CHAI Z, SHI B, et al. Comparative study of the lattice Boltzmann models for Allen-Cahn and Cahn-Hilliard equations[J]. Physical Review E, 2016, 94 (3): 033304.
DOI |
39 |
GUO Z, ZHENG C, SHI B. Discrete lattice effects on the forcing term in the lattice Boltzmann method[J]. Physical Review E, 2002, 65 (4): 046308.
DOI |
40 |
WEI Y, WANG Z, YANG J, et al. A simple lattice Boltzmann model for turbulence Rayleigh-Bénard thermal convection[J]. Computers and Fluids, 2015, 118, 167- 171.
DOI |
41 |
LIANG H, SHI B, GUO Z, et al. Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows[J]. Physical Review E, 2014, 89 (5): 053320.
DOI |
42 |
LIANG H, SHI B, CHAI Z. Lattice Boltzmann modeling of three-phase incompressible flows[J]. Physical Review E, 2016, 93 (1): 013308.
DOI |
43 |
ZU Y, HE S. Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts[J]. Physical Review E, 2013, 87 (4): 043301.
DOI |
44 |
REN F, SONG B W, SUKOP M C. Improved lattice Boltzmann modeling of binary flow based on the conservative Allen-Cahn equation[J]. Physical Review E, 2016, 94 (2): 023311.
DOI |
45 |
LIANG H, CHAI Z, SHI B. Phase-field-based lattice Boltzmann model for axisymmetric multiphase flows[J]. Physical Review E, 2014, 90 (6): 063311.
DOI |
46 |
ANWAR S. Three-dimensional modeling of coalescence of bubbles using Lattice Boltzmann model[J]. Computers and Fluids, 2019, 184, 178- 186.
DOI |
47 |
CHEN Y, DENG Z. Hydrodynamics of a droplet passing through a microfluidic T-junction[J]. Journal of Fluid Mechanics, 2017, 819, 401- 434.
DOI |
48 |
LOU Q, HUANG Y, LI L. Lattice Boltzmann model of gas-liquid two-phase flow of incomprssible power-law fluid and its application in the displacement problem of porous media[J]. Acta Physica Sinica, 2019, 68 (21): 214702.
DOI |
[1] | Shuting FENG, Houping DAI, Tongzheng SONG. Lattice Boltzmann Method for Two-dimensional Fractional Reaction-Diffusion Equations [J]. Chinese Journal of Computational Physics, 2022, 39(6): 666-676. |
[2] | Liubin ZHANG, Yanguang SHAN, Zhicheng RONG. Single Bubble Dynamics in Pool Boiling Under Uniform Electric Field: LBM Simulation [J]. Chinese Journal of Computational Physics, 2022, 39(5): 537-548. |
[3] | Jiaxin LIU, Lin ZHENG, Beihao ZHANG. Entropy Generation in Double-diffusive Natural Convection in a Square Porous Enclosure: Lattice Boltzmann Method [J]. Chinese Journal of Computational Physics, 2022, 39(5): 549-563. |
[4] | Pin-liang LIN, Huan-huan FENG, Yu-hong DONG. Analysis of Flow Field Around a Cylinder with Porous Media Layer [J]. Chinese Journal of Computational Physics, 2022, 39(4): 418-426. |
[5] | Qiao-ling ZHANG, He-fang JING. Flow Patterns in Three-dimensional Lid-driven Cavities with Curved Boundary: MRT-LBM Study [J]. Chinese Journal of Computational Physics, 2022, 39(4): 427-439. |
[6] | Lu CHEN, Ming GAO, Jia LIANG, Dongmin WANG, Yugang ZHAO, Lixin ZHANG. Droplet Upward Movement on an Inclined Surface Under Wetting Gradient: Lattice Boltzmann Simulation [J]. Chinese Journal of Computational Physics, 2021, 38(6): 672-682. |
[7] | Xuedan WEI, Houping DAI, Mengjun LI, Zhoushun ZHENG. Lattice Boltzmann Method for One-dimensional Riesz Spatial Fractional Convection-Diffusion Equations [J]. Chinese Journal of Computational Physics, 2021, 38(6): 683-692. |
[8] | Jianchao CAI. Some Key Issues and Thoughts on Spontaneous Imbibition in Porous Media [J]. Chinese Journal of Computational Physics, 2021, 38(5): 505-512. |
[9] | Jiangtao ZHENG, Ninghong JIA, Huifang HU, Yong YANG, Yang JU, Moran WANG. Study on Liquid-Liquid Spontaneous Imbibition Dynamics in Bifurcated Channels [J]. Chinese Journal of Computational Physics, 2021, 38(5): 543-554. |
[10] | Min WANG, Yuqing SHEN, Zhenyu CHEN, Peng XU. Reconstruction and Seepage Simulation of Random Porous Media with Monte Carlo Method [J]. Chinese Journal of Computational Physics, 2021, 38(5): 623-630. |
[11] | Jia LIANG, Ming GAO, Lu CHEN, Dongmin WANG, Lixin ZHANG. Lattice Boltzmann Study of a Droplet Impinging on a Stationary Droplet on a Fixed Wall Surface with Different Wettability [J]. Chinese Journal of Computational Physics, 2021, 38(3): 313-323. |
[12] | YUAN Junjie, YE Xin, SHAN Yanguang. Natural Convection in Triangular Cavity Filled with Nanofluid: Lattice Boltzmann Simulation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 38(1): 57-68. |
[13] | ZHAO Ming, WANG Ke, YU Duanmin. Ruelle-Takens Chaotic Natural Convection in a Horizontal Annulus with an Internally Slotted Circle [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(6): 667-676. |
[14] | WANG Jianyi, PAN Zhenhai, WU Huiying. Numerical Study of Inertial Focusing Behavior of Ellipsoidal Particles in a Microchannel [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(6): 677-686. |
[15] | WAN Qikun, LUO Song, SHANG Wenqiang, ZHANG Ying, LIU Haotian, ZHU Baojie. Lattice Boltzmann Numerical Simulation of Heat-Flow Coupling in a Square Cavity Filled with Porous Media with Partially Colding Wall Layout [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(4): 431-438. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.