Chinese Journal of Computational Physics ›› 2021, Vol. 38 ›› Issue (3): 301-312.DOI: 10.19596/j.cnki.1001-246x.8244
• Research Reports • Previous Articles Next Articles
Guyue TANG1,2, Qin LOU1,2,*(), Haoyuan WANG1,2
Received:
2020-06-18
Online:
2021-05-25
Published:
2021-09-30
Contact:
Qin LOU
CLC Number:
Guyue TANG, Qin LOU, Haoyuan WANG. Numerical Study on Natural Convective Flow and Heat Transfer of Nanofluids in a Circular Tube Containing Heat Source with Different Shape[J]. Chinese Journal of Computational Physics, 2021, 38(3): 301-312.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8244
ρ/(kg·m-3) | cp/(J·kg-1·K-1) | k/(W·m-1·K-1) | β/K-1 | |
水 | 997.1 | 4 179 | 0.613 | 21×10-5 |
铜 | 8 933 | 385 | 401 | 1.67×10-5 |
Table 1 Thermo-physical properties of pure water and Cu solid particles
ρ/(kg·m-3) | cp/(J·kg-1·K-1) | k/(W·m-1·K-1) | β/K-1 | |
水 | 997.1 | 4 179 | 0.613 | 21×10-5 |
铜 | 8 933 | 385 | 401 | 1.67×10-5 |
Nuave | 最大误差(δmax)/% | 最小误差(δmin)/% | |
Case 1 (圆形) | 0.0031 Ra0.241 8φ0.078 2 | 15.16 | 0.22 |
Case 2 (三角形) | 0.0036 Ra0.230 9φ0.082 9 | 7.17 | 0.88 |
Case 3 (方形) | 0.0024 Ra0.272 5φ0.077 8 | 16.33 | 0.21 |
Table 2 Fit function within a given range of control parameters(104≤Ra≤106, 0.01≤φ≤0.1), as well as its maximum(δmax) and minimum deviation(δmin) from the simulated data
Nuave | 最大误差(δmax)/% | 最小误差(δmin)/% | |
Case 1 (圆形) | 0.0031 Ra0.241 8φ0.078 2 | 15.16 | 0.22 |
Case 2 (三角形) | 0.0036 Ra0.230 9φ0.082 9 | 7.17 | 0.88 |
Case 3 (方形) | 0.0024 Ra0.272 5φ0.077 8 | 16.33 | 0.21 |
1 | CHOL S U S. Enhancing thermal conductivity of fluids with nanoparticles[C]//ASME-Publications-Fed, 1995, 231: 99-106. |
2 |
KHANAFER K, VAFAI K, LIGHTSTONE M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids[J]. International Journal of Heat and Mass Transfer, 2003, 46 (19): 3639- 3653.
DOI |
3 |
KEFAYATI G R. Lattice Boltzmann simulation of natural convection in nanofluid-filled 2D long enclosures at presence of magnetic field[J]. Theoretical and Computational Fluid Dynamics, 2013, 27 (6): 865- 883.
DOI |
4 |
MAHMOODI M. Numerical simulation of free convection of a nanofluid in L-shaped cavities[J]. International Journal of Thermal Sciences, 2011, 50 (9): 1731- 1740.
DOI |
5 |
SOURTIJI E, HOSSEINIZADEH S F. Heat transfer augmentation of magnetohydrodynamics natural convection in L-shaped cavities utilizing nanofluids[J]. Thermal Science, 2012, 16 (2): 489- 501.
DOI |
6 |
IZADI M, MOHEBBI R, KARIMI D, et al. Numerical simulation of natural convection heat transfer inside a perpendicular to shaped cavity filled by MWCNT-Fe3O4/water hybrid nanofluids using LBM[J]. Chemical Engineering and Processing-Process Intensification, 2018, 125, 56- 66.
DOI |
7 | 张晶, 白国君, 马文强, 等. 粘度模型对U型封闭腔内AI2O3-水纳米流体自然对流的影响[J]. 甘肃科学学报, 2017, 29 (5): 110- 115. |
8 |
KALIDASAN K, KANNA P R. Natural convection on an open square cavity containing diagonally placed heaters and adiabatic square block and filled with hybrid nanofluid of nanodiamond-cobalt oxide/water[J]. International Communications in Heat and Mass Transfer, 2017, 81, 64- 71.
DOI |
9 |
WANG L, CHAI Z, SHI B. Regularized lattice Boltzmann simulation of double-diffusive convection of power-law nanofluids in rectangular enclosures[J]. International Journal of Heat and Mass Transfer, 2016, 102, 381- 395.
DOI |
10 |
WANG L, SHI B, CHAI Z. Effects of temperature-dependent properties on natural convection of nanofluids in a partially heated cubic enclosure[J]. Applied Thermal Engineering, 2018, 128, 204- 213.
DOI |
11 |
WANG L, HUANG C, YANG X. Effects of temperature-dependent properties on natural convection of power-law nanofluids in rectangular cavities with sinusoidal temperature distribution[J]. International Journal of Heat and Mass Transfer, 2019, 128, 688- 699.
DOI |
12 |
HE Y R, QI C, HU Y W, et al. Lattice Boltzmann simulation of alumina-water nanofluid in a square cavity[J]. Nanoscale Research Letters, 2011, 6 (1): 184.
DOI |
13 |
SHEIKHOLESLAMI M, GORJI-BANDPY M, DOMAIRRY G. Free convection of nanofluid filled enclosure using lattice Boltzmann method (LBM)[J]. Applied Mathematics and Mechanics-English Edition, 2013, 34 (7): 833- 846.
DOI |
14 |
MEHRIZI A A, FARHADI M, AFROOZI H H, et al. Mixed convection heat transfer in a ventilated cavity with hot obstacle: Effect of nanofluid and outlet port location[J]. International Communications in Heat and Mass Transfer, 2012, 39 (7): 1000- 1008.
DOI |
15 |
SEBDANI S M, MAHMOODI M, HASHEMI S M. Effect of nanofluid variable properties on mixed convection in a square cavity[J]. International Journal of Thermal Sciences, 2012, 52, 112- 126.
DOI |
16 |
MA Y, RASHIDI M M, MOHEBBI R, et al. Nanofluid natural convection in a corrugated solar power plant using the hybrid LBM-TVD method[J]. Energy, 2020, 199, 117402.
DOI |
17 | ABBASSI M A, SAFAEI M R, DJEBALI R, et al. LBM simulation of free convection in a nanofluid filled incinerator containing a hot block[J]. International Journal of Heat and Mass Transfer, 2018, 144, 172- 185. |
18 | AFSANEH R, KHOSROW J, EBRAHIM G R. Numerical investigation of pool nucleate boiling in anofluid with lattice Boltzmann method[J]. Journal of Theoretical and Applied Mechanics, 2016, 54 (3): 811- 825. |
19 |
KHANAFER K, VAFAI K, LIGHTSTONE M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids[J]. International Journal of Heat and Mass Transfer, 2003, 46 (19): 3639- 3653.
DOI |
20 | KAMYAR A, SAIDUR R, HASANUZZAMAN M. Application of computational fluid dynamics (CFD) for nanofluids[J]. International Journal of Heat and Mass Transfer, 2012, 55 (15/16): 4104- 4115. |
21 | WANG X Q, MUJUMDAR A S. Heat transfer characteristics of nanofluids: A review[J]. International Journal of Thermal Sciences, 2007, 45 (1): 1- 19. |
22 | REA U, MCKRELL T, HU L W, et al. Laminar convective heat transfer and viscous pressure loss of alumina-water and zirconia-water nanofluids[J]. International Journal of Heat and Mass Transfer, 2009, 52 (7/8): 2042- 2048. |
23 |
MAXWELL-GARNETT J C. Colours in metal glasses and in metallic films[J]. Philosophical Transactions of the Royal Society of London, Series A, 1904, 203, 385- 420.
DOI |
24 |
BRINKMAN H C. The viscosity of concentrated suspensions and solutions[J]. Journal of Chemical Physics, 1952, 20 (4): 571- 581.
DOI |
25 |
GRAY D D, GIORGINI A. The validity of the boussinesq approximation for liquids and gases[J]. International Journal of Heat and Mass Transfer, 1976, 19 (5): 545- 551.
DOI |
26 |
LI Q, HE Y L, WANG Y, et al. An improved thermal lattice Boltzmann model for flows without viscous heat dissipation and compression work[J]. International Journal of Modern Physics C, 2008, 19 (1): 125- 150.
DOI |
27 | LOU Q, ZANG C, WANG H, et al. Interfacial dynamics of immiscible gas-liquid two-phase flow for CO2 in Microchannel: Lattice Boltzmann method[J]. Chinese J Comput Phys, 2019, 32 (2): 153- 164. |
28 | NIE D M, LIN J Z, HUANG L Z. Lattice-Boltzmann investigation of rotating turbulence[J]. Chinese J Comput Phys, 2013, 30 (1): 11- 18. |
29 | TAO S, ZHOU L, ZONG Z. Multi-block lattice Boltzmann method for flows around two tandem rotating circular cylinders[J]. Chinese J Comput Phys, 2013, 30 (2): 159- 168. |
30 | XIE C Y, ZHANG J Y, WANG M R. Lattice Boltzmann modeling of non-Newtonian multiphase fluid displacement[J]. Chinese J Comput Phys, 2016, 33 (2): 147- 155. |
31 |
CHOPARD B, FALCONE J L, LATT J. The lattice Boltzmann advection-diffusion model revisited[J]. Eur Phys J Special Topics, 2009, 171, 245- 249.
DOI |
32 |
CHAI Z, ZHAO T S. Lattice Boltzmann model for the convection-diffusion equation[J]. Physical Review E, 2013, 87 (6): 063309.
DOI |
33 |
ZHANG T, SHI B C, GUO Z L, et al. General bounce-back scheme for concentration boundary condition in the lattice-Boltzmann method[J]. Physical Review E, 2012, 85 (1): 016701.
DOI |
34 |
GANGAWANE K M. Computational analysis of mixed convection heat transfer characteristics in lid-driven cavity containing triangular block with constant heat flux: Effect of Prandtl and Grashof numbers[J]. International Journal of Heat and Mass Transfer, 2017, 105, 34- 57.
DOI |
35 |
GANGAWANE K M, BHARTI R P, KUMAR S. Effects of heating location and size on natural convection in partially heated open-ended enclosure by using lattice Boltzmann method[J]. Heat Transfer Engineering, 2016, 37 (6): 507- 522.
DOI |
[1] | YUAN Junjie, YE Xin, SHAN Yanguang. Natural Convection in Triangular Cavity Filled with Nanofluid: Lattice Boltzmann Simulation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 38(1): 57-68. |
[2] | ZHOU Lu, MA Honghe. Numerical Simulation of Heat Transfer of Synthetic Oil-based Nanofluids in a Parabolic Trough Solar Receiver [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 38(1): 99-105. |
[3] | ZHOU Lujun, XUAN Yimin, LI Qiang. Multiscale Simulation of Nanofluid Multiphase Flows [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 26(6): 849-856. |
[4] | HU Haiyang, WANG Qiang. Flow Heat Transfer Integrated Method Overcoming Stiffness in Two-equation Turbulence Models [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 26(5): 685-692. |
[5] | CAO Bingyang. A Nonequilibrium Molecular Dynamics Method for Thermal Conductivity Simulation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 24(4): 463-466. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.