Chinese Journal of Computational Physics ›› 2021, Vol. 38 ›› Issue (4): 423-430.DOI: 10.19596/j.cnki.1001-246x.8277
• Research Reports • Previous Articles Next Articles
Shuyu ZHENG, Jiazhen PENG, Xianmei ZHANG(), Erbing XUE, Limin YU
Received:
2020-09-21
Online:
2021-07-25
Published:
2021-12-21
Contact:
Xianmei ZHANG
CLC Number:
Shuyu ZHENG, Jiazhen PENG, Xianmei ZHANG, Erbing XUE, Limin YU. Prediction of Energy Confinement Time in Tokamak Based on Neural Networks[J]. Chinese Journal of Computational Physics, 2021, 38(4): 423-430.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8277
学习率 | 优化器 | 学习率衰减 | Batch size | 正则化系数 |
3×10-4 | ADAM(0.9, 0.96) | 0.994 | 0.235 | 0.002 |
Table 1 Values of parameters in the network
学习率 | 优化器 | 学习率衰减 | Batch size | 正则化系数 |
3×10-4 | ADAM(0.9, 0.96) | 0.994 | 0.235 | 0.002 |
eRMSE | eMAPE/% | R2 | |
多元线性回归 | 0.011 | 17.104 | 0.335 |
神经网络模型 | 0.007 | 12.194 | 0.729 |
Table 2 Performance of multiple regression model and neural network model
eRMSE | eMAPE/% | R2 | |
多元线性回归 | 0.011 | 17.104 | 0.335 |
神经网络模型 | 0.007 | 12.194 | 0.729 |
eRMSE | eMAPE/% | R2 | |
多元线性回归 | 0.022 | 20.869 | 0.149 |
神经网络模型 | 0.010 | 13.518 | 0.574 |
Table 3 Performance of multiple regression model and neural network model in testing sets
eRMSE | eMAPE/% | R2 | |
多元线性回归 | 0.022 | 20.869 | 0.149 |
神经网络模型 | 0.010 | 13.518 | 0.574 |
噪声数据比例/% | eRMSE | eMAPE/% | R2 |
0 | 0.010 | 13.518 | 0.574 |
5 | 0.013 | 13.741 | 0.562 |
10 | 0.013 | 13.852 | 0.519 |
Table 4 Resistance to noise of the neural network model
噪声数据比例/% | eRMSE | eMAPE/% | R2 |
0 | 0.010 | 13.518 | 0.574 |
5 | 0.013 | 13.741 | 0.562 |
10 | 0.013 | 13.852 | 0.519 |
1 | GOLDSTON R J. Energy confinement scaling in tokamaks: Some implications of recent experiments with ohmic and strong auxiliary heating[J]. Plasma Physics & Controlled Fusion, 1984, 26 (1A): 87- 105. |
2 |
PARKER R R, GREENWALD M, LUCKHARDT S C, et al. Progress in tokamak research at MIT[J]. Nuclear Fusion, 1985, 25 (9): 1127- 1136.
DOI |
3 | MEREZHKIN V G, MUKHOVATOV V S, POLEVOI A R. Transport coefficints in the T-11 tokamak[J]. Plasma Phys, 1988, 14 (2): 50- 69. |
4 | GOLDSTON R J. Energy confinement scaling in tokamaks[J]. Plasma Phys and Control Fusion, 1984, 10 (3): 26- 87. |
5 | 万宝年, 徐国盛. EAST全超导托卡马克高约束稳态运行实验研究进展[J]. 中国科学: 物理学力学天文学, 2019, 49 (4): 47- 59. |
6 |
UCKAN N A, TOLLIVER J S, HOULBERG W A, et al. Influence of fast alpha diffusion and thermal alpha buildup on tokamak reactor performance[J]. Fusion Tech, 1988, 13, 411- 422.
DOI |
7 |
KAYE S M, GREENWALD M, STROTH U, et al. ITER L mode confinement database[J]. Nuclear Fusion, 1997, 37 (9): 1303- 1329.
DOI |
8 |
WAKATANI M, MVKHOVATOV V, BURRELL K, et al. Plasma confinement and transport[J]. Nuclear Fusion, 1999, 39 (12): 2175- 2249.
DOI |
9 |
GARCIA J, CAMBON D. On the universality of power laws for tokamak plasma predictions[J]. Plasma Physics and Controlled Fusion, 2018, 60 (2): 025028.
DOI |
10 | 周于皓, 刘慧卿, 祁鹏, 等. 基于循环神经网络的缝洞型油藏油井产量预测[J]. 计算物理, 2018, 35 (6): 668- 674. |
11 | 张庆福, 姚军, 黄朝琴, 等. 裂缝性介质多尺度深度学习模型[J]. 计算物理, 2019, 36 (6): 665- 672. |
12 | 卢新瑞, 黄捍东, 李帅, 等. 基于U-Net的盐体识别方法[J]. 计算物理, 2020, 37 (3): 665- 672. |
13 | RATTA G A, VEGA J, MURARI A, et al. An advanced disruption predictor for JET tested in a simulated real-time environment[J]. Nuclear Fusion, 2010, 50 (2): 1- 10. |
14 | MENEGHINI O, LUNA C J, SMITH S P, et al. Modeling of transport phenomena in tokamak plasmas with neural networks[J]. Phys Plasmas, 2014, 21 (6): 063022. |
15 | 王勃. EAST托卡马克的破裂数据分析研究[D]. 合肥: 中国科学技术大学, 2016. |
16 |
JOUNG S, KIM J, SWAK S, et al. Deep neural network Grad-Shafranov solver constrained with measured magnetic signals[J]. Nucl Fusion, 2020, 60 (1): 016034.
DOI |
17 |
ZHENG W, HU F R, ZHANG M, et al. Hybrid neural network for density limit disruption prediction and avoidance on J-TEXT tokamak[J]. Nucl Fusion, 2018, 58 (5): 056016.
DOI |
18 |
ZHENG W, WU Q, ZHANG M, et al. Disruption predictor based on neural network and anomaly detection on J-TEXT[J]. Plasma Physics and Controlled Fusion, 2020, 62 (4): 045012.
DOI |
19 |
Van de PLASSCHE K L, CITRIN J, BOURDELLE C, et al. Fast modeling of turbulent transport in fusion plasmas using neural networks[J]. Physics of Plasmas, 2020, 27, 022310.
DOI |
20 |
WINKLER D A, LE Tu C. Corrigendum: Performance of deep and shallow neural networks, the universal approximation theorem activity cliffs, and QSAR[J]. Molecular Informatics, 2017, 36 (11): 1781141.
DOI |
21 | IAN Goodfellow, et al. Deep learning[M]. MIT Press, 2016. |
22 | 杨观赐, 杨静, 李少波, 等. 基于Dopout与ADAM优化器的改进CNN算法[J]. 华中科技大学学报: 自然科学版, 2018, 46 (7): 122- 127. |
23 |
RODRIGUEZ J D, PEREZ A, LOZANO J A. Sensitivity analysis of k-fold cross validation in prediction error estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32 (3): 569- 575.
DOI |
[1] | Guozheng WU, Fajie WANG, Suifu CHENG, Chengxin ZHANG. Numerical Simulation of Forward and Inverse Problems of Internal Sound Field Based on Physics-informed Neural Network [J]. Chinese Journal of Computational Physics, 2022, 39(6): 687-698. |
[2] | Cong XIAO, Shicheng ZHANG, Xinfang MA, Tong ZHOU, Tengfei HOU. Model-reduced Autoregressive Neural Network for Parameter Inversion [J]. Chinese Journal of Computational Physics, 2022, 39(5): 564-578. |
[3] | Can HUANG, Leng TIAN, Heng-li WANG, Jia-xin WANG, Li-li JIANG. A Single Well Production Forecasting Model of Reservoir Based on Conditional Generative Adversarial Net [J]. Chinese Journal of Computational Physics, 2022, 39(4): 465-478. |
[4] | Jian PAN, Zhaoli GUO, Songze CHEN. A Compound Neural Network for Learning Partial Differential Equations from Noisy Data [J]. Chinese Journal of Computational Physics, 2022, 39(2): 223-232. |
[5] | Lihong TANG, Zongmei HE, Yanli YAO. Dynamical Analysis and Circuit Implementation of a Memristive Hopfield Neural Network [J]. Chinese Journal of Computational Physics, 2022, 39(2): 244-252. |
[6] | Hong LI, Lixin ZHANG, Yan REN, Ming GAO, Jingnan LIU. Prediction of Water Temperature of Mixed-flow Closed Cooling Tower Based on BP Neural Network and Grey Correlation Analysis [J]. Chinese Journal of Computational Physics, 2022, 39(1): 53-59. |
[7] | Jia LUO, Liang SUN, Yinhu QIAO. Dynamical Analysis and Circuit Implementation of a Memristor Synapse-coupled Ring Hopfield Neural Network [J]. Chinese Journal of Computational Physics, 2022, 39(1): 109-117. |
[8] | ZHOU Qian, WEI Duqu. Firing Activity of Memristive Neural Network Under Field Coupling [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(6): 750-756. |
[9] | LIU Zuguang, LI Xinxia, YANG Ming. Effect of Lower Hybrid Wave Current Drive with High Component N‖ on EAST [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(4): 467-472. |
[10] | LU Xinrui, HUANG Handong, LI Shuai, YIN Long. Salt-body Classification Method Based on U-Net [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(3): 327-334. |
[11] | ZHOU Yuhao, LIU Huiqing, QI Peng, ZHAO Meng, CHEN Yu. Forecast of Oil Production in Fractured-Vuggy Reservoir by Using Recurrent Neural Networks [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(6): 668-674. |
[12] | ZHA Xuejun, ZHONG Dejun, WANG Fuqiong, CHEN Yiping, LU Hongwei, HU Liqun. Monte-Carlo Modelling of Impurity Transport in EAST Tokamak [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 32(6): 715-721. |
[13] | GOU Xueyin, GUO Lixin, ZHANG Lianbo. Support Vector Machine and Neural Network in Inversion of Rough Surface Parameters [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 31(1): 75-84. |
[14] | LIU Yan, GONG Xueyu, YANG Lei, PENG Xiaowei, YIN Lan. Numerical Solution of Full Wave Equation for Fast Wave Current Drive in Tokamak [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 29(3): 375-382. |
[15] | LI Xu, YU Jihui, LI Yongming, WANG Quandi. Artificial Neural Network Prediction of Crosstalk Coupling Between Interconnecting Wires [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 26(2): 311-316. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.