Chinese Journal of Computational Physics ›› 2022, Vol. 39 ›› Issue (3): 309-317.DOI: 10.19596/j.cnki.1001-246x.8411
• Research Reports • Previous Articles Next Articles
Jiali ZHU(), Yueqiang SHANG*(
)
Received:
2021-06-11
Online:
2022-05-25
Published:
2022-09-02
Contact:
Yueqiang SHANG
Jiali ZHU, Yueqiang SHANG. A Parallel Two-level Stablized Finite Element Algorithm for Incompressible Flows[J]. Chinese Journal of Computational Physics, 2022, 39(3): 309-317.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8411
h | H | CPU/s | $\frac{\left\|p-p^h\right\|_{0, \mathit{\Omega}}}{\|p\|_{0, \mathit{\Omega}}}$ | 收敛阶 | |
1/27 | 1/18 | 0.3 | 0.002 231 99 | 0.002 671 32 | |
1/64 | 1/32 | 1.26 | 0.000 445 662 | 0.000 423 465 | 1.895 44 |
1/125 | 1/50 | 4.19 | 0.000 118 793 | 0.000 105 77 | 1.984 19 |
Table 1 Calculation errors of the approximation solutions with AlgorithmⅡ
h | H | CPU/s | $\frac{\left\|p-p^h\right\|_{0, \mathit{\Omega}}}{\|p\|_{0, \mathit{\Omega}}}$ | 收敛阶 | |
1/27 | 1/18 | 0.3 | 0.002 231 99 | 0.002 671 32 | |
1/64 | 1/32 | 1.26 | 0.000 445 662 | 0.000 423 465 | 1.895 44 |
1/125 | 1/50 | 4.19 | 0.000 118 793 | 0.000 105 77 | 1.984 19 |
h | H | CPU/s | $\frac{\left\|p-p^h\right\|_{0, \mathit{\Omega}}}{\|p\|_{0, \mathit{\Omega}}}$ | 收敛阶 | |
1/27 | 1/18 | 0.33 | 0.008 306 41 | 0.002 654 18 | |
1/64 | 1/32 | 1.24 | 0.001 451 32 | 0.000 407 09 | 2.026 32 |
1/125 | 1/50 | 4.214 | 0.000 307 177 | 0.000 127 241 | 2.297 95 |
Table 2 Calculation errors of the approximation solutions with AlgorithmⅡ without stabilization
h | H | CPU/s | $\frac{\left\|p-p^h\right\|_{0, \mathit{\Omega}}}{\|p\|_{0, \mathit{\Omega}}}$ | 收敛阶 | |
1/27 | 1/18 | 0.33 | 0.008 306 41 | 0.002 654 18 | |
1/64 | 1/32 | 1.24 | 0.001 451 32 | 0.000 407 09 | 2.026 32 |
1/125 | 1/50 | 4.214 | 0.000 307 177 | 0.000 127 241 | 2.297 95 |
h | H | CPU/s | $\frac{\left\|p-p^h\right\|_{0, \mathit{\Omega}}}{\|p\|_{0, \mathit{\Omega}}}$ | 收敛阶 | |
1/27 | 1/18 | 0.66 | 0.002 244 77 | 0.002 268 77 | |
1/64 | 1/32 | 3.45 | 0.000 433 208 | 0.000 401 801 | 1.915 99 |
1/125 | 1/50 | 14.652 | 0.000 117 007 | 0.000 106 459 | 1.958 06 |
Table 3 Calculation errors of the approximation solutions with standard Grad-div stabilized algorithm
h | H | CPU/s | $\frac{\left\|p-p^h\right\|_{0, \mathit{\Omega}}}{\|p\|_{0, \mathit{\Omega}}}$ | 收敛阶 | |
1/27 | 1/18 | 0.66 | 0.002 244 77 | 0.002 268 77 | |
1/64 | 1/32 | 3.45 | 0.000 433 208 | 0.000 401 801 | 1.915 99 |
1/125 | 1/50 | 14.652 | 0.000 117 007 | 0.000 106 459 | 1.958 06 |
ν | 算法Ⅱ | 并行不带稳定项算法[ | 标准稳定有限元算法[ | |||||
1 | 0.000 396 008 | 0.000 653 796 | 0.000 395 882 | 0.000 605 905 | 0.000 395 174 | 0.000 482 748 | ||
0.1 | 0.000 404 811 | 0.000 437 283 | 0.000 419 501 | 0.000 413 509 | 0.000 402 798 | 0.000 401 947 | ||
0.01 | 0.000 445 662 | 0.000 423 465 | 0.001 451 32 | 0.000 407 09 | 0.000 433 208 | 0.000 401 801 | ||
0.001 | 0.000 639 316 | 0.000 423 619 | 0.013 970 9 | 0.000 406 619 | 0.000 558 298 | 0.000 415 755 | ||
0.0001 | 0.002 934 72 | 0.000 502 547 | 0.139 655 | 0.000 406 574 | 0.002 352 17 | 0.000 501 986 |
Table 4 Calculation errors of three algorithms with differentν
ν | 算法Ⅱ | 并行不带稳定项算法[ | 标准稳定有限元算法[ | |||||
1 | 0.000 396 008 | 0.000 653 796 | 0.000 395 882 | 0.000 605 905 | 0.000 395 174 | 0.000 482 748 | ||
0.1 | 0.000 404 811 | 0.000 437 283 | 0.000 419 501 | 0.000 413 509 | 0.000 402 798 | 0.000 401 947 | ||
0.01 | 0.000 445 662 | 0.000 423 465 | 0.001 451 32 | 0.000 407 09 | 0.000 433 208 | 0.000 401 801 | ||
0.001 | 0.000 639 316 | 0.000 423 619 | 0.013 970 9 | 0.000 406 619 | 0.000 558 298 | 0.000 415 755 | ||
0.0001 | 0.002 934 72 | 0.000 502 547 | 0.139 655 | 0.000 406 574 | 0.002 352 17 | 0.000 501 986 |
ν | 算法Ⅱ | 并行不带稳定项算法[ | 标准稳定有限元算法[ |
1 | 1.2 | 1.23 | 3.34 |
0.1 | 1.544 | 1.26 | 3.43 |
0.01 | 1.26 | 1.24 | 3.45 |
0.001 | 1.2 | 1.2 | 3.32 |
0.0001 | 1.19 | 1.19 | 3.34 |
Table 5 Computation time of three algorithms with differentν
ν | 算法Ⅱ | 并行不带稳定项算法[ | 标准稳定有限元算法[ |
1 | 1.2 | 1.23 | 3.34 |
0.1 | 1.544 | 1.26 | 3.43 |
0.01 | 1.26 | 1.24 | 3.45 |
0.001 | 1.2 | 1.2 | 3.32 |
0.0001 | 1.19 | 1.19 | 3.34 |
算法 | h | H | CPU/s | 收敛阶 | ||
算法B1 | 1/36 | 1/6 | 0.25 | 0.038 828 5 | 0.049 271 6 | |
1/64 | 1/8 | 0.78 | 0.022 016 6 | 0.024 655 | 1.011 8 | |
1/100 | 1/10 | 1.83 | 0.013 383 5 | 0.014 624 9 | 1.121 44 | |
1/144 | 1/12 | 4.041 | 0.008 587 9 | 0.009 937 13 | 1.199 09 | |
算法B2 | 1/36 | 1/6 | 0.24 | 0.805 262 | 0.028 664 8 | |
1/64 | 1/8 | 0.78 | 0.336 315 | 0.016 610 2 | 1.514 82 | |
1/100 | 1/10 | 1.81 | 0.175 062 | 0.010 898 3 | 1.459 75 | |
1/144 | 1/12 | 3.85 | 0.104 861 | 0.007 953 88 | 1.401 34 |
Table 6 Calculation errors of Algorithms B1 and B2 under P1-P1 element
算法 | h | H | CPU/s | 收敛阶 | ||
算法B1 | 1/36 | 1/6 | 0.25 | 0.038 828 5 | 0.049 271 6 | |
1/64 | 1/8 | 0.78 | 0.022 016 6 | 0.024 655 | 1.011 8 | |
1/100 | 1/10 | 1.83 | 0.013 383 5 | 0.014 624 9 | 1.121 44 | |
1/144 | 1/12 | 4.041 | 0.008 587 9 | 0.009 937 13 | 1.199 09 | |
算法B2 | 1/36 | 1/6 | 0.24 | 0.805 262 | 0.028 664 8 | |
1/64 | 1/8 | 0.78 | 0.336 315 | 0.016 610 2 | 1.514 82 | |
1/100 | 1/10 | 1.81 | 0.175 062 | 0.010 898 3 | 1.459 75 | |
1/144 | 1/12 | 3.85 | 0.104 861 | 0.007 953 88 | 1.401 34 |
1 |
|
2 |
DOI |
3 |
曹念铮, 游仁然. 求解振荡及非定常Stokes流动的边界元方法[J]. 计算物理, 1990, 7 (3): 257- 267.
|
4 |
DOI |
5 |
DOI |
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
周春华. 流动数值模拟中一种并行自适应有限元算法[J]. 计算物理, 2006, 23 (4): 412- 418.
|
12 |
LAWRENCE C E. Partial differential equations[M]. 2nd ed. American Mathmatical Society, 2010.
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
[1] | Xiaoyan HU, Zhengfeng FAN. An Efficient Parallel Algorithm on Multi-block Structure Meshes for Radiation Diffusion in Inertial Confinement Fusion Implosion [J]. Chinese Journal of Computational Physics, 2022, 39(3): 277-285. |
[2] | HU Jun, LIU Quan, NI Guoxi. Bayesian Sparse Identification of Time-varying Partial Differential Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 38(1): 25-34. |
[3] | LI Xindong, ZHAO Yingkui, HU Zongmin, JIANG Zonglin. Investigation of Normal Shock Structure by Using Navier-Stokes Equations with the Second Viscosity [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(5): 505-513. |
[4] | DING Qi, SHANG Yueqiang. Parallel Finite Element Algorithms Based on Two-grid Discretization for Time-dependent Navier-Stokes Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(1): 10-18. |
[5] | ZHANG Shouhui, LIANG Dong. A Strang-type Alternating Segment Domain Decomposition Method for Two-dimensional Parabolic Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(4): 413-428. |
[6] | YANG Xiaocheng, SHANG Yueqiang. Two-level Subgrid Stabilized Methods for Navier-Stokes Equations at High Reynolds Numbers [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(6): 657-665. |
[7] | QI Meiling, YANG Qiong, WANG Canglong, TIAN Yuan, YANG Lei. Parallel Algorithm on GPU and Optimization for Molecular Dynamics Simulation of Irradiation Damage of Structure Materials [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(4): 461-467. |
[8] | LUO Yuou, YU Yan, LUO Zhendong. A Reduced-Order Simulation Model for Parabolized Navier-Stokes Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 31(1): 11-20. |
[9] | ZHUO Changfei, WU Xiaosong, FENG Feng, XIE Aiyuan. Supersonic Non-equilibrium Flow Simulation Based on Lattice Boltzmann Method [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 30(5): 659-666. |
[10] | ZHANG Huifeng, OUYANG Jie, DAI Xiangyan. Parallel Algorithm for Brownian Configuration Fields with Finite Volume Method [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 29(1): 17-24. |
[11] | SHANG Yueqiang, HE Yinnian. Parallel Finite Element Algorithms Based on Fully Overlapping Domain Decomposition for Time-dependent Navier-Stokes Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 28(2): 181-187. |
[12] | TAO Ruyi, JIANG Kun, ZHAO Runxiang, WANG Hao. Supersonic Flow Characteristics of Dispenser with Opened Cabin [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 27(1): 51-58. |
[13] | HAN Zhonghua, SONG Wenping, QIAO Zhide. Numerical Simulation of Active Stall Control on High-lift Airfoil [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 26(6): 837-841. |
[14] | HAN Zhonghua, SONG Wenping, QIAO Zhide. An Implicit Preconditioning Method for Steady and Unsteady Flows [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 26(5): 679-684. |
[15] | ZHANG Shouhui, WANG Wenqia. High-order Accurate Alternating Group 8-point Scheme for Convection Diffusion Problems [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 26(5): 703-711. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.