Chinese Journal of Computational Physics ›› 2022, Vol. 39 ›› Issue (3): 327-334.DOI: 10.19596/j.cnki.1001-246x.8404
• Research Reports • Previous Articles Next Articles
Hang JI1,2,3, Zhongmou SUN1,2, Zhuoyan ZHOU1, Yuzhu LIU1,2,*()
Received:
2021-05-24
Online:
2022-05-25
Published:
2022-09-02
Contact:
Yuzhu LIU
Hang JI, Zhongmou SUN, Zhuoyan ZHOU, Yuzhu LIU. Modulation and Degradation of CO Molecular and Ionic Properties with External Electric Field[J]. Chinese Journal of Computational Physics, 2022, 39(3): 327-334.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8404
Method | Re/Å | E/Hartree |
B3LYP/6-311G++ | 1.146 92 | -113.300 013 |
B3LYP/6-311 | 1.147 32 | -113.296 813 |
BVP86/6-311G++ | 1.159 46 | -113.308 410 |
BVP86/6-311 | 1.160 21 | -113.305 365 |
Experimental[ | 1.128 20 |
Table 1 Structure of CO molecular ground state optimized with different methods
Method | Re/Å | E/Hartree |
B3LYP/6-311G++ | 1.146 92 | -113.300 013 |
B3LYP/6-311 | 1.147 32 | -113.296 813 |
BVP86/6-311G++ | 1.159 46 | -113.308 410 |
BVP86/6-311 | 1.160 21 | -113.305 365 |
Experimental[ | 1.128 20 |
F/a.u. | E/Hartree | Re/Å | μ/Debye |
-0.015 | -113.301 152 69 | 1.142 07 | 0.513 9 |
-0.010 | -113.300 353 82 | 1.143 49 | 0.299 4 |
-0.005 | -113.299 974 98 | 1.145 04 | 0.086 8 |
0.0 | -113.300 013 34 | 1.146 74 | 0.124 8 |
0.005 | -113.300 467 33 | 1.148 59 | 0.335 9 |
0.010 | -113.301 336 68 | 1.150 60 | 0.547 1 |
0.015 | -113.302 622 38 | 1.152 77 | 0.759 2 |
Table 2 Bond lengths, energy and dipole moments of CO molecules under different external electric fields
F/a.u. | E/Hartree | Re/Å | μ/Debye |
-0.015 | -113.301 152 69 | 1.142 07 | 0.513 9 |
-0.010 | -113.300 353 82 | 1.143 49 | 0.299 4 |
-0.005 | -113.299 974 98 | 1.145 04 | 0.086 8 |
0.0 | -113.300 013 34 | 1.146 74 | 0.124 8 |
0.005 | -113.300 467 33 | 1.148 59 | 0.335 9 |
0.010 | -113.301 336 68 | 1.150 60 | 0.547 1 |
0.015 | -113.302 622 38 | 1.152 77 | 0.759 2 |
F/a.u. | E/Hartree | Re/Å | μ/Debye |
-0.015 | -112.760 316 43 | 1.130 90 | 2.348 0 |
-0.010 | -112.765 093 44 | 1.131 06 | 2.508 8 |
-0.005 | -112.770 184 52 | 1.131 25 | 2.667 3 |
0.0 | -112.775 585 88 | 1.131 78 | 2.824 2 |
0.005 | -112.781 294 58 | 1.132 26 | 2.979 5 |
0.010 | -112.787 308 41 | 1.133 01 | 3.133 9 |
0.015 | -112.793 625 39 | 1.133 82 | 3.287 2 |
Table 3 Bond lengths, energies and dipole moments of CO+ ions under different external electric fields
F/a.u. | E/Hartree | Re/Å | μ/Debye |
-0.015 | -112.760 316 43 | 1.130 90 | 2.348 0 |
-0.010 | -112.765 093 44 | 1.131 06 | 2.508 8 |
-0.005 | -112.770 184 52 | 1.131 25 | 2.667 3 |
0.0 | -112.775 585 88 | 1.131 78 | 2.824 2 |
0.005 | -112.781 294 58 | 1.132 26 | 2.979 5 |
0.010 | -112.787 308 41 | 1.133 01 | 3.133 9 |
0.015 | -112.793 625 39 | 1.133 82 | 3.287 2 |
F/a.u. | C | O |
-0.015 | 0.074 | -0.074 |
-0.010 | 0.091 | -0.091 |
-0.005 | 0.107 | -0.107 |
0.0 | 0.122 | -0.122 |
0.005 | 0.136 | -0.136 |
0.010 | 0.149 | -0.149 |
0.015 | 0.162 | -0.162 |
Table 4 Effect of applied electric field on charge distribution of CO molecules
F/a.u. | C | O |
-0.015 | 0.074 | -0.074 |
-0.010 | 0.091 | -0.091 |
-0.005 | 0.107 | -0.107 |
0.0 | 0.122 | -0.122 |
0.005 | 0.136 | -0.136 |
0.010 | 0.149 | -0.149 |
0.015 | 0.162 | -0.162 |
F/a.u. | EL/eV | EH/eV | EG/eV |
-0.015 | -0.071 83 | -0.407 09 | 0.335 26 |
-0.010 | -0.067 05 | -0.401 33 | 0.334 28 |
-0.005 | -0.063 04 | -0.395 73 | 0.332 69 |
0.0 | -0.059 33 | -0.390 31 | 0.330 98 |
0.005 | -0.055 90 | -0.385 06 | 0.327 22 |
0.010 | -0.052 76 | -0.379 98 | 0.327 22 |
0.015 | -0.049 89 | -0.375 08 | 0.325 19 |
Table 5 Frontier orbital energy and energy gap
F/a.u. | EL/eV | EH/eV | EG/eV |
-0.015 | -0.071 83 | -0.407 09 | 0.335 26 |
-0.010 | -0.067 05 | -0.401 33 | 0.334 28 |
-0.005 | -0.063 04 | -0.395 73 | 0.332 69 |
0.0 | -0.059 33 | -0.390 31 | 0.330 98 |
0.005 | -0.055 90 | -0.385 06 | 0.327 22 |
0.010 | -0.052 76 | -0.379 98 | 0.327 22 |
0.015 | -0.049 89 | -0.375 08 | 0.325 19 |
Alpha | Beta | |||||||
F/a.u. | EL/eV | EH/eV | EG/eV | F/a.u. | EL/eV | EH/eV | EG/eV | |
-0.015 | -0.457 96 | -0.872 94 | 11.287 456 | -0.015 | -0.669 81 | -0.872 15 | 5.503 648 | |
-0.010 | -0.455 65 | -0.870 00 | 11.270 32 | -0.010 | -0.663 98 | -0.870 96 | 5.629 856 | |
-0.005 | -0.453 44 | -0.867 05 | 11.250 192 | -0.005 | -0.658 24 | -0.869 87 | 5.756 336 | |
0.0 | -0.451 43 | -0.864 06 | 11.223 536 | 0.0 | -0.652 60 | -0.868 76 | 5.879 552 | |
0.005 | -0.449 49 | -0.861 05 | 11.194 432 | 0.005 | -0.647 04 | -0.867 77 | 6.003 856 | |
0.010 | -0.447 72 | -0.857 99 | 11.159 344 | 0.010 | -0.641 58 | -0.866 78 | 6.125 44 | |
0.015 | -0.446 04 | -0.854 90 | 11.120 992 | 0.015 | -0.636 22 | -0.865 87 | 6.246 48 |
Table 6 Frontier orbital energies and energy gaps of ions
Alpha | Beta | |||||||
F/a.u. | EL/eV | EH/eV | EG/eV | F/a.u. | EL/eV | EH/eV | EG/eV | |
-0.015 | -0.457 96 | -0.872 94 | 11.287 456 | -0.015 | -0.669 81 | -0.872 15 | 5.503 648 | |
-0.010 | -0.455 65 | -0.870 00 | 11.270 32 | -0.010 | -0.663 98 | -0.870 96 | 5.629 856 | |
-0.005 | -0.453 44 | -0.867 05 | 11.250 192 | -0.005 | -0.658 24 | -0.869 87 | 5.756 336 | |
0.0 | -0.451 43 | -0.864 06 | 11.223 536 | 0.0 | -0.652 60 | -0.868 76 | 5.879 552 | |
0.005 | -0.449 49 | -0.861 05 | 11.194 432 | 0.005 | -0.647 04 | -0.867 77 | 6.003 856 | |
0.010 | -0.447 72 | -0.857 99 | 11.159 344 | 0.010 | -0.641 58 | -0.866 78 | 6.125 44 | |
0.015 | -0.446 04 | -0.854 90 | 11.120 992 | 0.015 | -0.636 22 | -0.865 87 | 6.246 48 |
F/a.u. | f/cm-1 | IR intensity |
-0.015 | 2 099.28 | 48.533 6 |
-0.010 | 2 088.54 | 57.668 6 |
-0.005 | 2 076.65 | 67.585 9 |
0.0 | 2 063.59 | 78.304 9 |
0.005 | 2 049.34 | 89.849 8 |
0.010 | 2 033.85 | 102.249 1 |
0.015 | 2 017.08 | 115.536 0 |
Table 7 Vibration frequency and IR electric field intensity of CO molecules under electric fields
F/a.u. | f/cm-1 | IR intensity |
-0.015 | 2 099.28 | 48.533 6 |
-0.010 | 2 088.54 | 57.668 6 |
-0.005 | 2 076.65 | 67.585 9 |
0.0 | 2 063.59 | 78.304 9 |
0.005 | 2 049.34 | 89.849 8 |
0.010 | 2 033.85 | 102.249 1 |
0.015 | 2 017.08 | 115.536 0 |
1 |
|
2 |
|
3 |
|
4 |
SHI Guoqiang. Upthreshold dissociation of monovalent carbon monoxide[D]. Lanzhou: Lanzhou University, 2019.
|
5 |
HUANG Shaochuan. Experimental study on ionization and dissociation of carbon monoxide molecules in high intensity laser field[D]. Lanzhou: Lanzhou University, 2018.
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
DOI |
11 |
曾凡金, 邹世乾, 杨勇. 外电场对LaF分子几何结构与电子特性的影响[J]. 产业科技创新, 2020, 2 (20): 48- 49.
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
[1] | Hongfei ZHAN, Zhenning CAI, Guanghui HU. Wigner Ground State Calculation Based on Imaginary Time Propagation Method and Spectral Method [J]. Chinese Journal of Computational Physics, 2022, 39(6): 651-665. |
[2] | Wumaierjiang NAIPISAI, Haokui YAN, Abulimiti BUMALIYA, Danqi WANG, Mei XIANG, Huan AN. Spectrum and Dissociation Characteristics of CHBr3 Molecule Under External Electric Fields [J]. Chinese Journal of Computational Physics, 2022, 39(5): 624-630. |
[3] | Hui GAO, Zaifa YANG, Jingfen ZHAO, Huimin YUAN, Zhie LIU, Xian ZHAO. Effect of Nb, Sn, Cu, Fe and Cr on Zr (0001) Surface Nodular Corrosion Resistance: First Principles Study [J]. Chinese Journal of Computational Physics, 2022, 39(1): 101-108. |
[4] | Zhuoyan ZHOU, Yuzhu LIU, Yu CHEN, Xinyang ZHANG, Zhuoyi SUN. Dissociation Properties of Acrolein in External Electric Field [J]. Chinese Journal of Computational Physics, 2021, 38(6): 722-728. |
[5] | CHAI Rukuan, LIU Yuetian, YANG Li, ZHANG Yixin, XIN Jing, MA Jing. Adsorption Mechanism of Two Organic Molecules with Different Polarities on Calcite (104) Surface: Density Functional Theory Study [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(2): 221-230. |
[6] | CHEN Yu, XING Yongming. Effect of Hydrostatic Pressure on Magneto-optical Properties of Al14Mn2P16: A Density Functional Theory Study [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(2): 231-239. |
[7] | YIN Haifeng, ZENG Chunhua, CHEN Wenjing. Plasmon Excitations in Two-dimensional Binary Silicon Carbide Nanostructures [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(5): 603-609. |
[8] | HE Zhiwei, ZHANG Xiurong. Structure and Properties of (BN)25 Clusters [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(2): 219-224. |
[9] | ZHOU Kang, FENG Qing, TIAN Yun, LI Ke, ZHOU Qingbin. Oxidizing Gas NO2 Optical Gas Sensing Characteristics of Transition Metal Cu and Cr Doped TiO2 Surfaces [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(6): 702-710. |
[10] | WANG Xiaoqing, LIU Yuzhu, YIN Wenyi, LI Jinhua. Spectrum and Dissociation Characteristics of Methyl Bromide in External Electric Field [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(5): 619-625. |
[11] | XIE Jianming, CHEN Hongxia, ZHUANG Guoce. A study on Physical Properties of Mn-Doped (ZnSe)12 Clusters [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(4): 481-486. |
[12] | LI Dawei, GAO Yunliang, ZHU Yuanjiang, LI Jinping. Density Functional Theory Calculations of Ga Doped δ-Pu [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(4): 487-493. |
[13] | HE Junbo, LIU Yuzhu, LIN Hua, GE Yingjian, HAN Shun. Molecular Structure and Spectrum of Aflatoxin B1 Under External Electric Fields [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(3): 335-342. |
[14] | LIN Yan, LIU Yun, PENG Qingwei, WEI Xiaonan, TANG Yanlin. Calculation of Structural Parameters and Frontier Orbital of Cucurbituril (5-10) with Density Functional Theory [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(2): 221-229. |
[15] | ZHANG Xiangyun, LIU Yuzhu, YIN Wenyi, MA Xinyu, QIN Chaochao. Physical Properties and Spectra of BrCl Molecule Under External Electric Field [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 35(2): 230-234. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.