Chinese Journal of Computational Physics ›› 2022, Vol. 39 ›› Issue (5): 589-597.DOI: 10.19596/j.cnki.1001-246x.8476
• Research Reports • Previous Articles Next Articles
Lihong TANG1(), Zongmei HE1, Yanli YAO2
Received:
2021-11-17
Online:
2022-09-25
Published:
2023-01-07
Lihong TANG, Zongmei HE, Yanli YAO. Magnetic Induction HR Neuron with Hidden Extreme Multistability and Its Circuit Implementation[J]. Chinese Journal of Computational Physics, 2022, 39(5): 589-597.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8476
Fig.4 Phase plots of attractors corresponding to different magnetic induction intensity k1(a) Period-1 attractor at k1=-3.5; (b) Period-2 attractor at k1=-3; (c) Chaotic attractor at k1=-2.4; (d) Quasi-period attractor at k1=-1.8
Fig.8 Magnetic induction HR neuron circuit (a) Analog equivalent circuit of cosin memristor; (b) Analog equivalent circuit of magnetic induction HR neuron
Fig.11 Phase plot of attractors generated by magnetic induction HR neuron circuit under different magnetic induction intensities (a) Period attractor with RB=2.86 kΩ (k1=-3.5); (b) Period attractor with RB=3.4 kΩ (k1=-3); (c) Chaotic attractor with RB=4 kΩ (k1=-2.4); (d) Transient chaotic attractor with RB=5.55 kΩ (k1=-1.8)
Fig.12 Chaotic attractors generated by magnetic induction HR neuron circuit under different initial voltages, from left to right, vz = -26π, -24π, -22π, -20π, -18π, -16π, -14π, -12π, -10π, -8π
1 |
陈墨, 陈成杰, 包伯成, 等. 忆阻突触耦合Hopfield神经网络的初值敏感动力学[J]. 电子与信息学报, 2020, 42 (4): 870- 877.
|
2 |
|
3 |
DOI |
4 |
DOI |
5 |
王国威, 付燕. 电磁场作用下FHN神经元模型的动力学性质[J]. 湖北理工学院学报, 2021, 37 (2): 53- 58.
DOI |
6 |
DOI |
7 |
乔帅, 安新磊, 王红梅, 等. 磁通e-HR神经元隐藏放电与分岔行为的研究[J]. 云南大学学报(自然科学版), 2020, 42 (4): 685- 694.
|
8 |
安新磊, 张莉. 一类忆阻神经元的电活动多模振荡及Hamilton能量反馈控制[J]. 力学学报, 2020, 52 (4): 1174- 1188.
|
9 |
王松, 茅晓晨. 含时滞的忆阻耦合HR神经元的复杂放电行为[J]. 动力学与控制学报, 2020, 18 (1): 33- 39.
|
10 |
|
11 |
|
12 |
王红梅, 安新磊, 乔帅, 等. 磁通e-HR神经元模型的Hopf分岔分析与控制[J]. 山东理工大学学报(自然科学版), 2020, 34 (4): 50- 56. 50-56+62
|
13 |
安新磊, 乔帅, 张莉. 基于麦克斯韦电磁场理论的神经元动力学响应与隐藏放电控制[J]. 物理学报, 2021, 70 (5): 46- 65.
|
14 |
|
15 |
王春华, 蔺海荣, 孙晶如, 等. 基于忆阻器的混沌、存储器及神经网络电路研究进展[J]. 电子与信息学报, 2020, 42 (4): 795- 810.
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
徐昌彪, 何颖辉, 吴霞, 等. 多种多翼吸引子共存的新型三维分数阶混沌系统[J]. 哈尔滨工业大学学报, 2020, 52 (5): 92- 98.
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
|
[1] | Lihong TANG, Zongmei HE, Yanli YAO. Dynamical Analysis and Circuit Implementation of a Memristive Hopfield Neural Network [J]. Chinese Journal of Computational Physics, 2022, 39(2): 244-252. |
[2] | Jia LUO, Liang SUN, Yinhu QIAO. Dynamical Analysis and Circuit Implementation of a Memristor Synapse-coupled Ring Hopfield Neural Network [J]. Chinese Journal of Computational Physics, 2022, 39(1): 109-117. |
[3] | WANG Wei, ZENG Yicheng, CHEN Zheng, SUN Ruiting. Coexisting Attractors and Hopf Bifurcation in Floating Memristors Based Chaotic Circuit [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(6): 747-756. |
[4] | YU Shicheng, ZENG Yicheng, LI Zhijun. A Quadratic Memristor-based Fourth-order Chaotic Circuit [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 32(6): 735-743. |
[5] | TAN Zhiping, YANG Hongjiao, LIU Qineng, ZENG Yicheng. Analysis and Implementation of a Simplest Charge-controlled Memristor Chaotic Circuit [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 32(4): 496-504. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.