Chinese Journal of Computational Physics ›› 2024, Vol. 41 ›› Issue (3): 367-379.DOI: 10.19596/j.cnki.1001-246x.8764
Previous Articles Next Articles
Xuefeng SUO(), Denghui HE, Huadong WANG, Wei CAO(
)
Received:
2023-05-25
Online:
2024-05-25
Published:
2024-05-25
Contact:
Wei CAO
CLC Number:
Xuefeng SUO, Denghui HE, Huadong WANG, Wei CAO. Calculation Method of 3D Transient Temperature Fields in Functionally Graded Materials Subjected to Annular Heat Source[J]. Chinese Journal of Computational Physics, 2024, 41(3): 367-379.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8764
Duration time t0/s | Tmax/℃ ( | T/℃ ( | CPU t/s | |||||||
3D-FFT | Present study | Deviation | 3D-FFT | Present study | Deviation | 3D-FFT | Present study | |||
t0=1 | -32.69 | 8.33 | 125.48% | 459.90 | 462.63 | 0.59% | 61.28 | 171.63 | ||
t0=2 | 24.30 | 46.65 | 91.97% | 319.11 | 315.35 | 1.49% | 60.05 | 173.62 | ||
t0=3 | 99.76 | 109.76 | 10.02% | 194.97 | 197.33 | 1.21% | 60.89 | 172.56 |
Table 1 Predicted results from the present method and 3D-FFT method
Duration time t0/s | Tmax/℃ ( | T/℃ ( | CPU t/s | |||||||
3D-FFT | Present study | Deviation | 3D-FFT | Present study | Deviation | 3D-FFT | Present study | |||
t0=1 | -32.69 | 8.33 | 125.48% | 459.90 | 462.63 | 0.59% | 61.28 | 171.63 | ||
t0=2 | 24.30 | 46.65 | 91.97% | 319.11 | 315.35 | 1.49% | 60.05 | 173.62 | ||
t0=3 | 99.76 | 109.76 | 10.02% | 194.97 | 197.33 | 1.21% | 60.89 | 172.56 |
Duration time t0/s | Tmax/℃ ( | T/℃ ( | CPU t/s | ||||||||
FEM | 3D-FFT | Present study | FEM | 3D-FFT | Present study | FEM | 3D-FFT | Present study | |||
t0=0.1 | 63.64 | 59.87 | 62.50 | 173.52 | 170.98 | 184.39 | 1 623.42 | 49.63 | 120.36 | ||
t0=0.2 | 110.60 | 101.57 | 106.83 | 108.35 | 104.21 | 118.96 | 1 931.85 | 51.26 | 122.44 | ||
t0=0.3 | 108.04 | 98.69 | 105.84 | 68.36 | 63.03 | 72.85 | 1 736.64 | 51.31 | 123.56 |
Table 2 Comparisons of predicted results from the present method and FEM
Duration time t0/s | Tmax/℃ ( | T/℃ ( | CPU t/s | ||||||||
FEM | 3D-FFT | Present study | FEM | 3D-FFT | Present study | FEM | 3D-FFT | Present study | |||
t0=0.1 | 63.64 | 59.87 | 62.50 | 173.52 | 170.98 | 184.39 | 1 623.42 | 49.63 | 120.36 | ||
t0=0.2 | 110.60 | 101.57 | 106.83 | 108.35 | 104.21 | 118.96 | 1 931.85 | 51.26 | 122.44 | ||
t0=0.3 | 108.04 | 98.69 | 105.84 | 68.36 | 63.03 | 72.85 | 1 736.64 | 51.31 | 123.56 |
Fig.14 Influence of inner and outer diameter of annular heat source on temperature gradient distributions along X axis (a)inner radius; (b) outer radius
1 |
蔡珣, 赵涛, 陈秋龙, 等. 铸造铝合金激光表面改性金属-陶瓷梯度层[J]. 机械工程材料, 2002, 26 (1): 25- 28.
DOI |
2 |
GENG Y , MCCARTHY É , BRABAZON D , et al. Ti6Al4V functionally graded material via high power and high speed laser surface modification[J]. Surface and Coatings Technology, 2020, 398, 126085.
DOI |
3 |
KOTAR M , FUJISHIMA M , LEVY G N , et al. Advances in the understanding of the annular laser beam wire cladding process[J]. Journal of Materials Processing Technology, 2021, 294, 117105.
DOI |
4 |
GOVEKAR E , JEROMEN A , KUZNETSOV A , et al. Annular laser beam based direct metal deposition[J]. Procedia CIRP, 2018, 74, 222- 227.
DOI |
5 | ZHANG Jinchao , SHI Shihong , FU Geyan , et al. Analysis on surface finish of thin-wall parts by laser metal deposition with annular beam[J]. Optics & Laser Technology, 2019, 119, 105605. |
6 |
ZHANG Xueyang , XIE Youjun , LI Xianfang . Transient thermoelastic response in a cracked strip of functionally graded materials via generalized fractional heat conduction[J]. Applied Mathematical Modelling, 2019, 70, 328- 349.
DOI |
7 |
OGUNTALA G , SOBAMOWO G , ABD-ALHAMEED R . A new hybrid approach for transient heat transfer analysis of convective-radiative fin of functionally graded material under Lorentz force[J]. Thermal Science and Engineering Progress, 2020, 16, 100467.
DOI |
8 | 孙飞, 刘五祥, 张伦伟. 功能梯度半空间体的热弹性问题研究[J]. 力学季刊, 2017, 38 (3): 537- 544. |
9 |
ZHANG Hengliang , KAN Weimin , HU Xuejiao . Green's function approach to the nonlinear transient heat transfer analysis of functionally graded materials[J]. International Journal of Thermal Sciences, 2013, 71, 292- 301.
DOI |
10 |
张驰, 校金友. 用边界元分析功能梯度材料的稳态热传导[J]. 科学技术与工程, 2013, 13 (13): 3563-3565, 3571.
DOI |
11 |
ZHANG H , HAN S , FAN L , et al. The numerical manifold method for 2D transient heat conduction problems in functionally graded materials[J]. Engineering Analysis With Boundary Elements, 2018, 88, 145- 155.
DOI |
12 | 朱宗柏, 曾宪友, 肖金生. 陶瓷/金属梯度材料瞬态传热的有限差分分析[J]. 武汉理工大学学报, 2001, 23 (6): 18- 20. |
13 |
WANG Baolin , TIAN Zhenhui . Application of finite element-finite difference method to the determination of transient temperature field in functionally graded materials[J]. Finite Elements in Analysis and Design, 2005, 41 (4): 335- 349.
DOI |
14 | 许杨健, 涂代惠. 对流换热边界下梯度功能材料板瞬态热传导有限元分析[J]. 材料科学与工程学报, 2003, 21 (1): 76- 79. |
15 |
BURLAYENKO V N , ALTENBACH H , SADOWSKI T , et al. Modelling functionally graded materials in heat transfer and thermal stress analysis by means of graded finite elements[J]. Applied Mathematical Modelling, 2017, 45, 422- 438.
DOI |
16 | 王磊磊, 纪乐, 马文涛. FGMs稳态热传导分析的重心Lagrange插值配点法[J]. 计算物理, 2020, 37 (2): 173- 181. |
17 |
QU Wenzhen , FAN C M , ZHANG Yaoming . Analysis of three-dimensional heat conduction in functionally graded materials by using a hybrid numerical method[J]. International Journal of Heat and Mass Transfer, 2019, 145, 118771.
DOI |
18 |
LI Can , LI M M , SUN Xiaorui . Finite difference/Galerkin finite element methods for a fractional heat conduction-transfer equation[J]. Mathematical Methods in the Applied Sciences, 2021, 44 (10): 8302- 8321.
DOI |
19 |
左风丽, 崔霞, 袁光伟. 热传导方程三层并行差分格式初始条件的计算[J]. 计算物理, 2011, 28 (4): 488- 492.
DOI |
20 | 陈恭, 王一正, 王烨, 等. 缩减基有限元方法快速求解参数化偏微分方程[J]. 计算物理, 2018, 35 (5): 515- 524. |
21 |
MALEK M , IZEM N , MOHAMED M S , et al. A three-dimensional enriched finite element method for nonlinear transient heat transfer in functionally graded materials[J]. International Journal of Heat and Mass Transfer, 2020, 155, 119804.
DOI |
22 |
ZENG D , LATHAM W P , KAR A . Temperature distributions due to annular laser beam heating[J]. Journal of Laser Applications, 2005, 17 (4): 256- 262.
DOI |
23 | SHEN Junyong , ZHANG Xiaohui . Analysis of dual-phase-lag heat conduction in a two-dimensional slab heated by a moving annular laser pulse[J]. Applied Mathematical Modelling, 2022, 105, 160- 178. |
24 | CHEN Guibo , BI Juan . Modeling of annular long pulsed laser heating solid material using closed-form solutions[J]. Optik, 2017, 135, 389- 394. |
25 | XU Yuting , ZHANG Xiaohui , SHEN Junyong , et al. Temperature behavior of metal surface with moving annular hollow laser heat source[J]. Journal of Laser Applications, 2020, 32 (4): 042014. |
26 | WANG Ruiqin , DAI Shijie , ZHANG Huibo , et al. The temperature field study on the annular heat source model in large surface grinding by cup wheel[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93 (9): 3261- 3273. |
27 | ZHANG X , WANG Q J , ZENG Z , et al. An LT-FFT based model for diffusion-affected contacts[J]. Tribology International, 2021, 157, 106890. |
28 | LIU Shuangbiao , RODGERS M J , WANG Qian , et al. Temperature distributions and thermoelastic displacements in moving bodies[J]. Computer Modeling in Engineering & Sciences, 2002, 3 (4): 465- 482. |
29 | LIU Shuangbiao , WANG Qian . Transient thermoelastic stress fields in a half-space[J]. Journal of Tribology, 2003, 125 (1): 33- 43. |
30 | KUHLMAN K L . Review of inverse Laplace transform algorithms for Laplace-space numerical approaches[J]. Numerical Algorithms, 2013, 63, 339- 355. |
31 | CHOI H J , PAULINO G H . Thermoelastic contact mechanics for a flat punch sliding over a graded coating/substrate system with frictional heat generation[J]. Journal of the Mechanics and Physics of Solids, 2008, 56 (4): 1673- 1692. |
32 | STEHFEST H . Algorithm 368: Numerical inversion of Laplace transforms[D5][J]. Communications of the ACM, 1970, 13 (1): 47- 49. |
33 | TALBOT A . The accurate numerical inversion of Laplace transforms[J]. IMA Journal of Applied Mathematics, 1979, 23 (1): 97- 120. |
34 | D'AMORE L , LACCETTI G , MURLI A . An implementation of a Fourier series method for the numerical inversion of the Laplace transform[J]. ACM Transactions on Mathematical Software, 1999, 25 (3): 279- 305. |
35 | ABBAS I A , MARIN M . Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 87, 254- 260. |
36 | SHEN Junyong , ZHANG Xiaohui . Investigation of molten pool and heat transfer mechanisms after moving annular laser incidence metal by lattice Boltzmann method[J]. Journal of Manufacturing Processes, 2022, 80, 729- 742. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.