Chinese Journal of Computational Physics ›› 2024, Vol. 41 ›› Issue (3): 380-391.DOI: 10.19596/j.cnki.1001-246x.8730
Previous Articles Next Articles
Qin LI1,2(), Min ZHANG1,*(
), Ying XU3
Received:
2023-03-17
Online:
2024-05-25
Published:
2024-05-25
Contact:
Min ZHANG
CLC Number:
Qin LI, Min ZHANG, Ying XU. P-SV Wave Prestack Inversion Based on Hybrid Algorithm[J]. Chinese Journal of Computational Physics, 2024, 41(3): 380-391.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8730
介质结构 | ε | δ | γ | θ2 | φ |
ISO/TTI | 0/0.2 | 0/0.1 | 0/0.11 | 0/60 | 0/30 |
TTI/ISO | 0.2/0 | 0.1/0 | 0.11/0 | 60/0 | 30/0 |
TTI/TTI | 0.1/0.2 | 0.1/0.1 | 0.15/0.11 | 45/60 | 30/45 |
Table 1 Model parameters of three sets of two-layer media
介质结构 | ε | δ | γ | θ2 | φ |
ISO/TTI | 0/0.2 | 0/0.1 | 0/0.11 | 0/60 | 0/30 |
TTI/ISO | 0.2/0 | 0.1/0 | 0.11/0 | 60/0 | 30/0 |
TTI/TTI | 0.1/0.2 | 0.1/0.1 | 0.15/0.11 | 45/60 | 30/45 |
介质结构 | ε | δ | γ | θ2 | φ |
0.1~0.4 | 0.1 | 0.11 | |||
ISO/TTI | 0.2 | 0.05~0.2 | 0.11 | 0/60 | 0/30 |
0.2 | 0.1 | 0.06~0.21 | |||
0.1~0.4 | 0.1 | 0.11 | |||
TTI/ISO | 0.2 | 0.05~0.2 | 0.11 | 60/0 | 30/0 |
0.2 | 0.1 | 0.06~0.21 | |||
0.1~0.4 | 0.1 | 0.11 | |||
TTI/TTI | 0.2 | 0.05~0.2 | 0.11 | 45/60 | 30/45 |
0.2 | 0.1 | 0.06~0.21 |
Table 2 Anisotropic parameters of two-layer medium model
介质结构 | ε | δ | γ | θ2 | φ |
0.1~0.4 | 0.1 | 0.11 | |||
ISO/TTI | 0.2 | 0.05~0.2 | 0.11 | 0/60 | 0/30 |
0.2 | 0.1 | 0.06~0.21 | |||
0.1~0.4 | 0.1 | 0.11 | |||
TTI/ISO | 0.2 | 0.05~0.2 | 0.11 | 60/0 | 30/0 |
0.2 | 0.1 | 0.06~0.21 | |||
0.1~0.4 | 0.1 | 0.11 | |||
TTI/TTI | 0.2 | 0.05~0.2 | 0.11 | 45/60 | 30/45 |
0.2 | 0.1 | 0.06~0.21 |
Fig.3 Effects of anisotropic parameters ε, δ, γ on RPS in three models (a) ISO/TTI(ε); (b) ISO/TTI(δ); (c) ISO/TTI(γ); (d) TTI/ISO(ε); (e) TTI/ISO(δ); (f) TTI/ISO(γ); (g) TTI/TTI(ε); (h) TTI/TTI(δ); (i) TTI/TTI(γ)
介质 | VP/(m·s-1) | VS/(m·s-1) | ρ/(g·cm-3) | ε | δ | γ | θ2 | φ |
ISO | 3 000 | 1 750 | 2.4 | 0 | 0 | 0 | 0 | 0 |
TTI | 2 900 | 1 650 | 2.6 | 0.43 | 0.35 | 0.11 | 60 | 30 |
Table 3 ISO/TTI media model parameters
介质 | VP/(m·s-1) | VS/(m·s-1) | ρ/(g·cm-3) | ε | δ | γ | θ2 | φ |
ISO | 3 000 | 1 750 | 2.4 | 0 | 0 | 0 | 0 | 0 |
TTI | 2 900 | 1 650 | 2.6 | 0.43 | 0.35 | 0.11 | 60 | 30 |
反演参数 | GA | SA | |||||
ε | δ | γ | ε | δ | γ | ||
理论值 | 0.430 | 0.350 | 0.110 | 0.430 | 0.350 | 0.110 | |
反演值 | 0.432 | 0.339 | 0.106 | 0.430 7 | 0.351 4 | 0.112 | |
相对误差/% | 0.469 | 3.143 | 3.290 | 0.166 | 0.408 | 1.950 |
Table 4 Anisotropy parameter inversion results in TTI medium (GA, SA)
反演参数 | GA | SA | |||||
ε | δ | γ | ε | δ | γ | ||
理论值 | 0.430 | 0.350 | 0.110 | 0.430 | 0.350 | 0.110 | |
反演值 | 0.432 | 0.339 | 0.106 | 0.430 7 | 0.351 4 | 0.112 | |
相对误差/% | 0.469 | 3.143 | 3.290 | 0.166 | 0.408 | 1.950 |
ε | δ | γ | |
理论值 | 0.430 0 | 0.350 0 | 0.110 0 |
反演值 | 0.429 6 | 0.350 6 | 0.110 6 |
相对误差/% | 0.080 9 | 0.185 7 | 0.536 0 |
Table 5 Anisotropy parameter inversion results in TTI medium (HGA)
ε | δ | γ | |
理论值 | 0.430 0 | 0.350 0 | 0.110 0 |
反演值 | 0.429 6 | 0.350 6 | 0.110 6 |
相对误差/% | 0.080 9 | 0.185 7 | 0.536 0 |
ε | δ | γ | |
理论值 | 0.430 | 0.350 | 0.110 |
反演值 | 0.452 | 0.313 | 0.119 |
相对误差/% | 5.116 | 10.571 | 8.181 |
Table 6 Inversion results of anisotropy parameters in TTI media with noise
ε | δ | γ | |
理论值 | 0.430 | 0.350 | 0.110 |
反演值 | 0.452 | 0.313 | 0.119 |
相对误差/% | 5.116 | 10.571 | 8.181 |
反演参数 | GA | SA | HGA | |||||
N=50 | N=100 | N=50 | N=100 | N=50 | N=100 | |||
A/% | 1.132 | 0.233 | 3.257 | 4.298 | 2.182 | 0.573 | ||
B/% | 2.571 | 1.577 | 0.637 | 1.566 | 1.595 | 1.771 | ||
C/% | 4.590 | 1.682 | 8.496 | 3.980 | 3.612 | 1.305 |
Table 7 With N = 50 or 100, T = 100, inversion results of genetic algorithm, simulated annealing algorithm and hybrid genetic algorithm
反演参数 | GA | SA | HGA | |||||
N=50 | N=100 | N=50 | N=100 | N=50 | N=100 | |||
A/% | 1.132 | 0.233 | 3.257 | 4.298 | 2.182 | 0.573 | ||
B/% | 2.571 | 1.577 | 0.637 | 1.566 | 1.595 | 1.771 | ||
C/% | 4.590 | 1.682 | 8.496 | 3.980 | 3.612 | 1.305 |
反演参数 | GA | SA | HGA | |||||
T=50 | T=150 | T=50 | T=150 | T=50 | T=150 | |||
A/% | 0.264 | 0.256 | 3.488 | 4.235 | 0.343 | 0.003 | ||
B/% | 1.103 | 0.409 | 0.192 | 1.514 | 1.218 | 1.761 | ||
C/% | 0.349 | 3.490 | 2.410 | 2.563 | 2.727 | 0.666 |
Table 8 With T = 50 or 100, N=80, inversion results of genetic algorithm, simulated annealing algorithm and hybrid genetic algorithm
反演参数 | GA | SA | HGA | |||||
T=50 | T=150 | T=50 | T=150 | T=50 | T=150 | |||
A/% | 0.264 | 0.256 | 3.488 | 4.235 | 0.343 | 0.003 | ||
B/% | 1.103 | 0.409 | 0.192 | 1.514 | 1.218 | 1.761 | ||
C/% | 0.349 | 3.490 | 2.410 | 2.563 | 2.727 | 0.666 |
Fig.8 Profile of anisotropy parameters of the Hess-TTI model (Color bar on the right represents interval of anisotropy parameter.) (a) ε original profile; (b) δ original profile; (c) γ original profile; (d) ε inversion profile; (e) δ inversion profile; (f) γ inversion profile
Fig.10 Anisotropy parameter inversion profile of actual data (Color bar on the right represents interval of anisotropic parameter.) (a) ε inversion profile; (b) δ inversion profile; (c) γ inversion profile
1 | 强敏, 段志强, 张吉, 等. P-P、P-SV波叠前联合反演在致密气储层预测中的应用[J]. 地球物理学进展, 2018, 33 (4): 1540- 1544. |
2 | 张凌远, 张宏兵, 尚作萍, 等. 基于Zoeppritz方程的叠前和叠后混合多参数非线性地震反演[J]. 石油地球物理勘探, 2021, 56 (1): 164- 171. |
3 |
李爱山, 印兴耀, 张繁昌, 等. 叠前AVA多参数同步反演技术在含气储层预测中的应用[J]. 石油物探, 2007, 46 (1): 64-68, 93.
DOI |
4 |
喻岳钰, 杨长春, 王彦飞, 等. 叠前弹性阻抗反演及其在含气储层预测中的应用[J]. 地球物理学进展, 2009, 24 (2): 574- 580.
DOI |
5 |
张卫卫, 何敏, 颜承志, 等. AVO叠前反演技术在珠江口盆地白云深水区烃类检测中的应用[J]. 中国海上油气, 2010, 22 (3): 160-163, 167.
DOI |
6 |
郎晓玲, 彭仕宓, 康洪全, 等. 叠前同时反演方法在流体识别中的应用[J]. 石油物探, 2010, 49 (2): 164- 169.
DOI |
7 |
周义军, 蒲仁海, 曾令帮. 叠前储层描述技术在岩性气藏勘探中的研究与应用[J]. 地球物理学进展, 2011, 26 (1): 229- 234.
DOI |
8 |
刘涛, 方中于, 但志伟, 等. 叠前同步反演在涠西南凹陷储层预测中的应用[J]. 石油天然气学报, 2011, 33 (9): 77- 81.
DOI |
9 |
施行觉, 夏从俊, 吴永钢. 储层条件下波速的变化规律及其影响因素的实验研究[J]. 地球物理学报, 1998, 41 (2): 234- 241.
DOI |
10 |
阴可, 杨慧珠. 各向异性介质中的AVO[J]. 地球物理学报, 1998, 41 (3): 382- 391.
DOI |
11 | DONATE M S , MARTIN N W . Making AVO analysis for converted waves a practical issue[J]. SEG Technical Program Expanded Abstracts, 1998, 17, 2060- 2063. |
12 | ALVAREZ K , DONATE M , ALDANA M . AVO analysis for converted waves[J]. SEG Technical Program Expanded Abstracts, 1999, 18, 876- 879. |
13 | NEFEDKINA T , BUZLUKOV V . Seismic dynamic inversion using multiwave AVO-data[J]. SEG Technical Program Expanded Abstracts, 1999, 18, 888- 891. |
14 | PŠENČÍK I , VAVRYČUK V . Weak contrast PP wave displacement R/T coefficients in weakly anisotropic elastic media[J]. Pure and Applied Geophysics, 1998, 151 (2/4): 699- 718. |
15 |
VAVRYČUK V . Weak-contrast reflection/transmission coefficients in weakly anisotropic elastic media: P-wave incidence[J]. Geophysical Journal International, 1999, 138 (2): 553- 562.
DOI |
16 | JÍLEK P . Converted PS-wave reflection coefficients in weakly anisotropic media[J]. Pure and Applied Geophysics, 2002, 159 (7/8): 1527- 1562. |
17 | ARTOLA F V A , LEIDERMAN R , FONTOURA S A B , et al. Zero-offset C-wave reflectivity in horizontally layered media[J]. SEG Technical Program Expanded Abstracts, 2003, 22, 761- 764. |
18 | BEHURA J , TSVANKIN I . Small-angle AVO response of PS-waves in tilted TI media[J]. SEG Technical Program Expanded Abstracts, 2005, 24, 206- 209. |
19 |
MALLICK S . Model-based inversion of amplitude-variations-with-offset data using a genetic algorithm[J]. Geophysics, 1995, 60 (4): 939- 954.
DOI |
20 | SEN M K , STOFFA P L . Simulated annealing, genetic algorithms and seismic waveform inversion[J]. SEG Technical Program Expanded Abstracts, 1991, 10, 945- 947. |
21 |
STOFFA P L , SEN M K . Nonlinear multiparameter optimization using genetic algorithms; inversion of plane-wave seismograms[J]. Geophysics, 1991, 56 (11): 1794- 1810.
DOI |
22 | 方中于, 王丽萍, 杜家元, 等. 基于混合智能优化算法的非线性AVO反演[J]. 石油地球物理勘探, 2017, 52 (4): 797- 804. |
23 |
成琥, 赵宪生, 王红霞, 等. 基于BP网络和遗传算法的波阻抗混合反演[J]. 石油物探, 2006, 45 (6): 574- 579.
DOI |
24 | 聂茹, 岳建华, 邓帅奇. 地震波阻抗反演的免疫粒子群算法[J]. 中国矿业大学学报, 2010, 39 (5): 733- 739. |
25 | 徐善辉, 韩立国, 郭建. TTI介质各向异性参数多波反演与PS波AVO分析[J]. 地球物理学报, 2012, 55 (2): 569- 576. |
26 | 王丽萍. 智能优化算法叠前AVO非线性反演研究[D]. 武汉: 中国地质大学, 2015. |
27 |
METROPPOLIS N , ROSENBLUTH A W , ROSENBLUTH M N , et al. Equation of state calculations by fast computing machines[J]. The Journal of Chemical Physics, 1953, 21 (6): 1087- 1092.
DOI |
28 |
KIRKPATRIEK S , CELATT C D , VECCHI M P . Optimization by simulated annealing[J]. Science, 1983, 220 (4598): 671- 680.
DOI |
29 |
ROTHMAN D H . Nonlinear inversion, statistical mechanics, and residual statics estimation[J]. Geophysics, 1985, 50 (12): 2784- 2796.
DOI |
30 |
ROTHMAN D H . Automatic estimation of large residual statics corrections[J]. Geophysics, 1986, 51 (2): 332- 346.
DOI |
31 |
SEN M K , STOFFA P L . Nonlinear one-dimensional seismic waveform inversion using simulated annealing[J]. Geophysics, 1991, 56 (10): 1624- 1638.
DOI |
32 |
SEND M K , BHATTACHARYA B B , STOFFA P L . Nonlinear inversion of resistivity sounding data[J]. Geophysics, 1993, 58 (4): 496- 507.
DOI |
33 |
MA Xinquan . Simultaneous inversion of prestack seismic data for rock properties using a global simulated annealing[J]. Geophysics, 2002, 67 (6): 1877- 1885.
DOI |
34 | 任义庆, 徐仲达, 马在田. 应用模拟退火法反演横波速度[J]. 石油地球物理勘探, 1996, 31 (5): 677- 684. |
35 | 师学明, 王家映. 一维层状介质大地电磁模拟退火反演法[J]. 地球科学, 1998, 23 (5): 543- 545. |
36 |
桂卫华, 黄泰松, 阳春华. 一种改进遗传算法及其在企业原料采购优化中的应用[J]. 矿冶工程, 2001, 21 (3): 59- 62.
DOI |
37 | 吴浩扬, 常炳国, 朱长纯, 等. 基于模拟退火机制的多种群并行遗传算法[J]. 软件学报, 2000, 11 (3): 416- 420. |
38 | 李勤, 赵斌, 马随波. TTI煤层群、相速度分析[J]. 计算物理, 2020, 37 (6): 709- 717. |
39 | 倪小威, 徐思慧, 冯加明, 等. 基于自适应差分进化算法的阵列侧向测井快速反演[J]. 计算物理, 2019, 36 (4): 465- 473. |
40 | 王黎翔, 王安琪, 黄志祥. 基于多算法优化SVM的粗糙面参数反演[J]. 计算物理, 2019, 36 (5): 577- 585. |
41 |
杨练兵, 郑宏伟, 罗格平, 等. 基于遗传算法优化BP神经网络的土壤盐渍化反演[J]. 地理与地理信息科学, 2021, 37 (2): 12-21, 37.
DOI |
42 |
萧秋兰. 遗传模拟退火算法的优化研究[J]. 信息记录材料, 2022, 23 (12): 95- 98.
DOI |
43 | 李琼, 刘海风, 张弓木, 等. 模拟退火算法在化学自由能模型中的应用[J]. 计算物理, 2019, 36 (3): 259- 264. |
44 | KANG Zhou, QU Zhiyi. Application of BP neural network optimized by genetic simulated annealing algorithm to prediction of air quality index in Lanzhou[C]//2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA). Beijing, China: IEEE, 2017: 155-160. |
45 |
印兴耀, 刘婵娟, 王保丽. 基于混合遗传算法的叠前随机反演方法[J]. 中国石油大学学报(自然科学版), 2017, 41 (4): 65- 70.
DOI |
46 |
李政伟, 谭国俊. 改进的退火遗传优化策略应用研究[J]. 计算机工程与应用, 2010, 46 (4): 245- 248.
DOI |
47 | 徐善辉. TTI介质PS波小角度AVO分析[D]. 长春: 吉林大学, 2009. |
48 | 宋欢, 胡耀垓, 赵正予, 等. 基于混合遗传算法的斜测电离图参数反演[J]. 地球物理学报, 2014, 57 (3): 703- 714. |
[1] | Wenmin HAN, Yaodong DAI, Chuqing YAO, Jiaxiang TIAN, Danfeng JIANG, Yifan ZHOU. Application of Genetic Algorithm to Optimal Design of Shielding Materials for Neutron-γ Mixed Radiation Fields [J]. Chinese Journal of Computational Physics, 2024, 41(3): 357-366. |
[2] | Yonglong DING, Linping HU, Ruiqin ZHANG. An Efficient Subspace Hybrid Algorithm Based on Direct Inversion in Iterative Subspace Algorithm [J]. Chinese Journal of Computational Physics, 2021, 38(4): 418-422. |
[3] | Lijuan TU, Enze ZHOU, Xuefei WU, Qi YANG, Xuefeng DING. Optimal Identification of Variable Resistance Coefficient of Heat Supply Network Based on Flow Measurement Points [J]. Chinese Journal of Computational Physics, 2021, 38(4): 498-504. |
[4] | LI Qiong, LIU Haifeng, ZHANG Gongmu, ZHANG Qili. Application of Simulated Annealing Method in Chemical Free Energy Model [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 36(3): 259-264. |
[5] | YAN Fan, LU Mei. Modified Genetic Algorithm for Identifying Material Thermal Properties and Strength of Heat Source [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 32(5): 623-630. |
[6] | WANG Huihui, LIU Dagang, MENG Lin, LIU Laqun. Particle Swarm Optimization and Genetic Algorithm for a Relativistic Backward Wave Oscillator [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 31(4): 479-485. |
[7] | XING Xiaoning, JING Xili, MA Yiheng, WANG Quanzhi, XU Yaoyun. Adaptive Hybrid Genetic Algorithm for Atomic Clusters [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 29(3): 459-465. |
[8] | ZHANG Shuai, GONG Shuxi, GUAN Ying, GONG Qi. Extrapolative Method in Pattern Calculation and Synthesis of Large Plane Arrays [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 28(4): 554-560. |
[9] | REN Shibo, HAN Peng, YANG Guanling. Real-coded Hybrid Genetic Algorithm for Particle Sizing with Photon Correlation Spectroscopy [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 28(1): 87-93. |
[10] | LI Shaoxin. Inversion of Particle Size Distribution from Dynamic Light Scattering Data with Gray-code Genetic Algorithm [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 25(3): 323-329. |
[11] | CHANG Shan, KONG Ren, LI Chunhua, CHEN Weizu, WANG Cunxin. Molecular Docking Parallel Approaches Based on MPI [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 25(2): 241-246. |
[12] | FAN Xiaoping, LI Gongsheng. An Improved Genetic Algorithm for Groundwater Pollution [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 24(2): 187-191. |
[13] | CHEN Jin-chun. Size Dependence of Structural and Magnetic Properties of Rhn(n=2~20) Clusters [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 22(5): 437-443. |
[14] | YAO Lei-hua. Parameter Identification in a 3-D Groundwater Flow Numerical Model: an Improved Genetic Algorithm and the Gauss-Newton Method [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 22(4): 311-318. |
[15] | LIU Hong-liang, ZHAO Yi-qiong, LI Yong-ping, FU Shao-jun, ZHANG Wei, ZHANG Xiao-bo, SHU Fang-jie. A Fast SA Algorithm for the Design of DOE for Uniform Illumination [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 22(3): 240-244. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.