Chinese Journal of Computational Physics ›› 2024, Vol. 41 ›› Issue (4): 523-534.DOI: 10.19596/j.cnki.1001-246x.8760
Previous Articles Next Articles
Ji CHEN1(), Yi XU2, Jinfu LIU3,*(
), Tao LIU4
Received:
2023-05-17
Online:
2024-07-25
Published:
2024-08-24
Contact:
Jinfu LIU
CLC Number:
Ji CHEN, Yi XU, Jinfu LIU, Tao LIU. Dynamics and Implementation of Memristive System Exhibiting Extreme Multistability[J]. Chinese Journal of Computational Physics, 2024, 41(4): 523-534.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8760
Fig.8 Dynamics of system (5) with respect to y(0) (a) bifurcation diagram; (b) Lyapunov exponents spectra; (c) mean values graph; (d)phase diagram of weak chaotic attractor
Fig.9 Phase portraits of the x-z plane with different initial conditions by MATLAB simulations (a) symmetrical single-wing chaotic attractor and symmetrical period-1 limitcycle; (b) symmetrical single-wing chaotic attractor and symmetrical period-2 limitcycle; (c) symmetrical single-wing chaotic attractor and symmetrical period-2 limitcycle; (d) four kinds of period-2 limitcycle; (e) two-wing chaotic attractor and four kinds of period-2 limitcycle
系统 | 原系统编号 | 固定参数下共存吸引子数量 |
系统1[ | VB5 | 2 |
系统2[ | VB18 | 17 |
系统3[ | VB3 | 6 |
系统(5) | VB5 | 21 |
Table 1 Comparison of system (5) and some same type systems
系统 | 原系统编号 | 固定参数下共存吸引子数量 |
系统1[ | VB5 | 2 |
系统2[ | VB18 | 17 |
系统3[ | VB3 | 6 |
系统(5) | VB5 | 21 |
参数 | 定义 | 数值 | 参数 | 定义 | 数值 |
R | 电阻 | 36 kΩ | vb | 电压 | 1 V |
C | 电容 | 100 nF | Rw | 电阻 | 36 kΩ |
Ra | 电阻 | 10 kΩ | R1 | 电阻 | 3 kΩ |
Rα | 电阻 | 36 kΩ | R2 | 电阻 | 10 kΩ |
Rβ | 电阻 | 72 kΩ |
Table 2 Circuit parameter values of system(5)
参数 | 定义 | 数值 | 参数 | 定义 | 数值 |
R | 电阻 | 36 kΩ | vb | 电压 | 1 V |
C | 电容 | 100 nF | Rw | 电阻 | 36 kΩ |
Ra | 电阻 | 10 kΩ | R1 | 电阻 | 3 kΩ |
Rα | 电阻 | 36 kΩ | R2 | 电阻 | 10 kΩ |
Rβ | 电阻 | 72 kΩ |
Fig.13 Phase portraits in the (vx-vz) plane with different initial conditions by PSIM simulations (a)symmetrical single-wing chaotic attractor and symmetrical period-1 limitcycle; (b)symmetrical single-wing chaotic attractor and symmetrical period-2 limitcycle; (c)symmetrical single-wing chaotic attractor and symmetrical period-2 limitcycle; (d)four kinds of period-2 limitcycle; (e)two-wing chaotic attractor and four kinds of period-2 limitcycle
1 | 陈墨, 陈成杰, 包伯成, 等. 忆阻突触耦合Hopfield神经网络的初值敏感动力学[J]. 电子与信息学报, 2020, 42 (4): 870- 877. |
2 |
MARCO D M , FORTI M , PANCIONI L , et al. Memristor neural networks for linear and quadratic programming problems[J]. IEEE Transactions on Cybernetics, 2022, 52 (3): 1822- 1835.
DOI |
3 | 王春华, 蔺海荣, 孙晶如, 等. 基于忆阻器的混沌、存储器及神经网络电路研究进展[J]. 电子与信息学报, 2020, 42 (4): 795- 810. |
4 | 唐利红, 贺宗梅, 姚延立. 忆阻Hopfield神经网络动力学分析及其电路实现[J]. 计算物理, 2022, 39 (2): 244- 252. |
5 | 周倩, 韦笃取. 场耦合忆阻神经网络的电活动[J]. 计算物理, 2020, 37 (6): 750- 756. |
6 | 闵富红, 王珠林, 王恩荣, 等. 新型忆阻器混沌电路及其在图像加密中的应用[J]. 电子与信息学报, 2016, 38 (10): 2681- 2688. |
7 |
WANG Leimin , DONG Tiandu , GE Mingfeng . Finite-time synchronization of memristor chaotic systems and its application in image encryption[J]. Applied Mathematics and Computation, 2019, 347, 293- 305.
DOI |
8 | 孙亮, 罗佳, 乔印虎. 忆阻Hopfield神经网络的初值位移调控动力学及其图像加密应用[J]. 计算物理, 2023, 40 (1): 106- 116. |
9 |
GU Shuangquan , PENG Qiqi , LENG Xiangxin , et al. A novel non-equilibrium memristor-based system with multi-wing attractors and multiple transient transitions[J]. Chaos, 2021, 31 (3): 033105.
DOI |
10 |
BAO Bocheng , JIANG Tao , WANG Guangyi , et al. Two-memristor-based Chua's hyperchaotic circuit with plane equilibrium and its extreme multistability[J]. Nonlinear Dynamics, 2017, 89 (2): 1157- 1171.
DOI |
11 |
YUAN Fang , WANG Guangyi , WANG Xiaowei . Extreme multistability in a memristor-based multi-scroll hyper-chaotic system[J]. Chaos, 2016, 26 (7): 073107.
DOI |
12 | 刘娣, 杨芳艳, 周国鹏, 等. 一类四维忆阻混沌电路的动力学行为分析[J]. 计算物理, 2018, 35 (4): 458- 468. |
13 | BAO Bocheng , BAO Han , WANG Ning , et al. Hidden extreme multistability in memristive hyperchaotic system[J]. Chaos Solitons & Fractals, 2017, 94, 102- 111. |
14 |
BAO Bocheng , MA Zhenghua , XU Jianping , et al. A simple memristor chaotic circuit with complex dynamics[J]. International Journal of Bifurcation and Chaos, 2011, 21 (9): 2629- 2645.
DOI |
15 |
WANG Chunhua , LIU Xiaoming , HU Xia . Multi-piecewise quadratic nonlinearity memristor and its 2N-scroll and 2N + 1-scroll chaotic attractors system[J]. Chaos, 2017, 27 (3): 033114.
DOI |
16 |
WU Huagan , YE Yi , CHEN Mo , et al. Periodically switched memristor initial boosting behaviors in memristive hypogenetic jerk system[J]. IEEE Access, 2019, 7, 145022- 145029.
DOI |
17 | NGONGHALA C N , FEUDEL U , SHOWALTER K . Extreme multistability in a chemical model system[J]. Physical Review E Statistical Nonlinear and soft Matter Physics, 2011, 83 (5 Pt 2): 056206. |
18 |
PATEL M S , PATEL U , SEN A , et al. Experimental observation of extreme multistability in an electronic system of two coupled Rössler oscillators[J]. Physical Review E Statistical Nonlinear and soft Matter Physics, 2014, 89 (2): 022918.
DOI |
19 |
HENS C , DANA S K , FEUDEL U . Extreme multistability: Attractor manipulation and robustness[J]. Chaos, 2015, 25 (5): 053112.
DOI |
20 | 闵富红, 金秋森. 双忆阻Shinriki振荡器的超级多稳态和反单调性分析[J]. 电子学报, 2019, 47 (11): 2263- 2270. |
21 |
BAO Han , WANG Ning , BAO Bocheng , et al. Initial condition-dependent dynamics and transient period in memristor-based hypogenetic jerk system with four line equilibria[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 57, 264- 275.
DOI |
22 | BAO Han , CHEN Mo , WU Huagan , et al. Memristor initial-boosted coexisting plane bifurcations and its extreme multi-stability reconstitution in two-memristor-based dynamical system[J]. Science China Technological Sciences, 2020, 63 (4): 603- 613. |
23 | 李志军, 曾以成. 基于文氏振荡器的忆阻混沌电路[J]. 电子与信息学报, 2014, 36 (1): 88- 93. |
24 | BAO Han , LIU Wenbo , CHEN Mo . Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive FitzHugh-Nagumo circuit[J]. Nonlinear Dynamics, 2019, 96 (3): 1879- 1894. |
25 | ZHANG Jihong , LIAO Xiaofeng . Effects of initial conditions on the synchronization of the coupled memristor neural circuits[J]. Nonlinear Dynamics, 2019, 95 (2): 1269- 1282. |
26 | CHEN Mo , BAO Bocheng , JIANG Tao , et al. Flux-charge analysis of initial state-dependent dynamical behaviors of a memristor emulator-based Chua's circuit[J]. International Journal of Bifurcation and Chaos, 2018, 28 (10): 1850120. |
27 | FITCH A L , YU Dongsheng , IU H H C , et al. Hyperchaos in a memristor-based modified canonical Chua's circuit[J]. International Journal of Bifurcation and Chaos, 2012, 22 (6): 1250133. |
28 | MA Jun , WU Fuqiang , REN Guodong , et al. A class of initials-dependent dynamical systems[J]. Applied Mathematics and Computation, 2017, 298, 65- 76. |
29 | LI Chunbiao , SPROTT J C . Variable-boostable chaotic flows[J]. Optik, 2016, 127 (22): 10389- 10398. |
30 | BAO Bocheng , QIAN Hui , XU Quan , et al. Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based hopfield neural network[J]. Frontiers in Computational Neuroscience, 2017, 11, 81. |
31 | ZHANG Xin , LI Chunbiao , CHEN Yudi , et al. A memristive chaotic oscillator with controllable amplitude and frequency[J]. Chaos Solitons & Fractals, 2020, 139, 110000. |
32 | HUANG Lili , WANG Yanling , JIANG Yicheng , et al. A novel memristor chaotic system with a hidden attractor and multistability and its implementation in a circuit[J]. Mathematical Problems in Engineering, 2021, 2021, 7457220. |
33 | 秦铭宏, 赖强, 吴永红. 具有无穷共存吸引子的简单忆阻混沌系统的分析与实现[J]. 物理学报, 2022, 71 (16): 86- 96. |
34 | DADRAS S , MOMENI H R , QI Guoyuan . Analysis of a new 3D smooth autonomous system with different wing chaotic attractors and transient chaos[J]. Nonlinear Dynamics, 2010, 62 (1): 391- 405. |
[1] | Lihong TANG, Zongmei HE, Yanli YAO. Magnetic Induction HR Neuron with Hidden Extreme Multistability and Its Circuit Implementation [J]. Chinese Journal of Computational Physics, 2022, 39(5): 589-597. |
[2] | FANG Sidong, WANG Weihong, WU Yonghui, CHENG Linsong. Transient Behavior Analysis of Fractured Horizontal Wells Based on an Improved Green Element Method [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(1): 69-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.