Chinese Journal of Computational Physics ›› 2025, Vol. 42 ›› Issue (2): 146-159.DOI: 10.19596/j.cnki.1001-246x.8892
• Research Reports • Previous Articles Next Articles
Yanqing ZHANG1(), Tongxiang GU2,*(
)
Received:
2024-01-11
Online:
2025-03-25
Published:
2025-04-08
Contact:
Tongxiang GU
Yanqing ZHANG, Tongxiang GU. Deep Learning Method for Solving Inverse Problem of Diffusion Coefficients for Diffusion Equation[J]. Chinese Journal of Computational Physics, 2025, 42(2): 146-159.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cjcp.org.cn/EN/10.19596/j.cnki.1001-246x.8892
结果 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
6.246 | 6.236 | 6.374 | 5.866 | |
0.048 | 0.071 | 1.994 | 6.133 |
Table 1 Diffusion coefficients and relative errors by PINN method
结果 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
6.246 | 6.236 | 6.374 | 5.866 | |
0.048 | 0.071 | 1.994 | 6.133 |
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
‖e‖2 | 0.115 6 | 0.676 5 | 2.170 | 10.20 |
‖e‖∞ | 0.375 0 | 0.902 6 | 1.579 | 6.889 |
Table 2 Errors in predict solutions by PINN method
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
‖e‖2 | 0.115 6 | 0.676 5 | 2.170 | 10.20 |
‖e‖∞ | 0.375 0 | 0.902 6 | 1.579 | 6.889 |
数据点数 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
N=5 | 0.062 | 0.192 | 0.053 | 1.972 |
N=10 | 0.162 | 0.366 | 2.954 | 1.567 |
N=20 | 0.058 | 0.298 | 0.164 | 2.026 |
N=50 | 0.012 | 0.242 | 0.605 | 0.249 |
N=100 | 0.012 | 0.398 | 0.281 | 3.912 |
Table 3 Relative errors of diffusion coefficients by PINN method in different number of data points and noise levels
数据点数 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
N=5 | 0.062 | 0.192 | 0.053 | 1.972 |
N=10 | 0.162 | 0.366 | 2.954 | 1.567 |
N=20 | 0.058 | 0.298 | 0.164 | 2.026 |
N=50 | 0.012 | 0.242 | 0.605 | 0.249 |
N=100 | 0.012 | 0.398 | 0.281 | 3.912 |
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
0.059 | 0.063 | 2.833 | 1.077 | |
1.094 | 1.522 | 22.603 | 14.105 | |
0.136 3 | 7.593 | 6.216 | 19.400 |
Table 4 Errors in diffusion coefficients Λ1 by PINN method
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
0.059 | 0.063 | 2.833 | 1.077 | |
1.094 | 1.522 | 22.603 | 14.105 | |
0.136 3 | 7.593 | 6.216 | 19.400 |
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
‖e‖2 | 0.036 89 | 0.214 2 | 1.842 | 1.648 |
‖e‖∞ | 0.058 85 | 0.277 1 | 1.254 | 1.221 |
Table 5 Error in predict solutions by PINN method in Λ1
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
‖e‖2 | 0.036 89 | 0.214 2 | 1.842 | 1.648 |
‖e‖∞ | 0.058 85 | 0.277 1 | 1.254 | 1.221 |
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
0.115 | 0.251 | 1.022 | 0.785 | |
1.564 | 7.680 | 25.419 | 21.586 | |
0.025 | 0.204 | 1.312 | 13.617 |
Table 6 Relative errors in diffusion coefficients Λ2 by PINN method
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
0.115 | 0.251 | 1.022 | 0.785 | |
1.564 | 7.680 | 25.419 | 21.586 | |
0.025 | 0.204 | 1.312 | 13.617 |
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
‖e‖2 | 0.078 35 | 0.326 6 | 1.899 | 2.187 |
‖e‖∞ | 0.112 60 | 0.304 1 | 1.102 | 1.552 |
Table 7 Error in predict solutions by PINN method in Λ2
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
‖e‖2 | 0.078 35 | 0.326 6 | 1.899 | 2.187 |
‖e‖∞ | 0.112 60 | 0.304 1 | 1.102 | 1.552 |
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
‖e‖2 | 1.249 | 1.245 | 2.662 | 41.04 |
‖e‖∞ | 7.189 | 16.18 | 22.09 | 282.7 |
Table 8 Errors in the inversion of diffusion coefficients a(t, x, y) by PINN method
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
‖e‖2 | 1.249 | 1.245 | 2.662 | 41.04 |
‖e‖∞ | 7.189 | 16.18 | 22.09 | 282.7 |
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
‖e‖2 | 0.204 4 | 0.140 5 | 0.612 6 | 4.451 |
‖e‖∞ | 0.658 7 | 0.289 1 | 0.915 0 | 11.81 |
Table 9 Errors in predict solutions by PINN method
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
‖e‖2 | 0.204 4 | 0.140 5 | 0.612 6 | 4.451 |
‖e‖∞ | 0.658 7 | 0.289 1 | 0.915 0 | 11.81 |
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
‖e‖2 | 0.798 | 4.049 | 9.125 | 32.17 |
‖e‖∞ | 2.188 | 10.88 | 22.68 | 71.21 |
Table 10 Errors in the inversion of diffusion coefficients a(x) by PINN method
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
‖e‖2 | 0.798 | 4.049 | 9.125 | 32.17 |
‖e‖∞ | 2.188 | 10.88 | 22.68 | 71.21 |
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
‖e‖2 | 0.071 1 | 0.360 5 | 1.201 | 2.733 |
‖e‖∞ | 0.133 5 | 0.438 8 | 1.324 | 3.991 |
Table 11 Errors in predict solutions by PINN method
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
‖e‖2 | 0.071 1 | 0.360 5 | 1.201 | 2.733 |
‖e‖∞ | 0.133 5 | 0.438 8 | 1.324 | 3.991 |
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
‖e‖2 | 0.347 0 | 0.529 0 | 1.861 | 7.185 |
‖e‖∞ | 0.503 6 | 0.617 5 | 0.259 5 | 8.057 |
Table 12 Errors in the inversion of diffusion coefficients a(x) by PINN method
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
‖e‖2 | 0.347 0 | 0.529 0 | 1.861 | 7.185 |
‖e‖∞ | 0.503 6 | 0.617 5 | 0.259 5 | 8.057 |
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
‖e‖2 | 0.110 7 | 0.199 8 | 0.497 8 | 1.638 |
‖e‖∞ | 0.143 0 | 0.153 7 | 0.447 4 | 1.316 |
Table 13 Errors in predict solutions by PINN method
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
‖e‖2 | 0.110 7 | 0.199 8 | 0.497 8 | 1.638 |
‖e‖∞ | 0.143 0 | 0.153 7 | 0.447 4 | 1.316 |
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
‖e‖2 | 1.585 | 2.995 | 11.65 | 26.14 |
‖e‖∞ | 3.176 | 5.971 | 16.07 | 38.16 |
Table 14 Errors in inversion of diffusion coefficients a(u) by PINN method
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
‖e‖2 | 1.585 | 2.995 | 11.65 | 26.14 |
‖e‖∞ | 3.176 | 5.971 | 16.07 | 38.16 |
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
‖e‖2 | 0.127 5 | 0.525 2 | 2.650 | 3.614 |
‖e‖∞ | 0.189 7 | 0.814 7 | 4.539 | 7.781 |
Table 15 Errors in predict solutions by PINN method
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
‖e‖2 | 0.127 5 | 0.525 2 | 2.650 | 3.614 |
‖e‖∞ | 0.189 7 | 0.814 7 | 4.539 | 7.781 |
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
2.848 | 7.241 | 7.902 | 6.307 | |
2.858 | 1.937 | 1.018 | 5.982 |
Table 16 Diffusion coefficients and relative errors by PINN method
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
2.848 | 7.241 | 7.902 | 6.307 | |
2.858 | 1.937 | 1.018 | 5.982 |
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
‖e‖2 | 0.078 80 | 0.225 1 | 0.466 9 | 5.636 |
‖e‖∞ | 0.270 4 | 0.674 8 | 2.190 | 2.966 |
Table 17 Errors in predict solutions by PINN method
误差 | 噪声水平/% | |||
0 | 1 | 5 | 10 | |
‖e‖2 | 0.078 80 | 0.225 1 | 0.466 9 | 5.636 |
‖e‖∞ | 0.270 4 | 0.674 8 | 2.190 | 2.966 |
1 |
程晋, 刘继军, 张波. 偏微分方程反问题: 模型、算法和应用[J]. 中国科学(数学), 2019, 49 (4): 643- 666.
|
2 |
辛志贤, 张启敏, 哈金才. 具有年龄结构的种群扩散系统反问题的数值解[J]. 河南师范大学学报(自然科学版), 2016, 44 (4): 27- 33.
|
3 |
DOI |
4 |
|
5 |
DOI |
6 |
薛齐文, 杨海天, 杜秀云. 同伦正则化算法求解多宗量瞬态热传导反问题[J]. 计算物理, 2006, 23 (2): 151- 157.
|
7 |
周焕林, 严俊, 余波, 等. 基于改进布谷鸟算法识别瞬态热传导问题的导热系数[J]. 计算物理, 2018, 35 (2): 212- 220.
DOI |
8 |
DOI |
9 |
DOI |
10 |
DOI |
11 |
DOI |
12 |
DOI |
13 |
DOI |
14 |
DOI |
15 |
DOI |
16 |
DOI |
17 |
DOI |
18 |
DOI |
19 |
吴国正, 王发杰, 程隋福, 等. 基于物理信息神经网络的内部声场正反问题数值计算[J]. 计算物理, 2022, 39 (6): 687- 698.
DOI |
20 |
|
21 |
|
22 |
|
23 |
张国安. 一类二维多层对流扩散方程参数反演的神经网络方法研究[D]. 上海: 上海财经大学, 2022.
|
24 |
李治平. 偏微分方程数值解讲义[M]. 北京: 北京大学出版社, 2010: 32- 36.
|
25 |
KINGMA D P, BA J. Adam: a method for stochastic optimization[DB/OL]. arXiv(2017-01-30). https://arxiv.org/abs/1412.6980.
|
26 |
|
27 |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016: 770-778.
|
28 |
GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]//Proceedings of the thirteenth international conference on artificial intelligence and statistics. Chia Laguna Resort, Sardinia, Italy: PMLR, 2010: 249-256.
|
29 |
HENDRYCKS D, GIMPEL K. Gaussian error linear units(gelus)[DB/OL]. arXiv(2023-06-06). http://export.arxiv.org/abs/1606.08415v5.
|
30 |
XIE H, ZHAI C, LIU L, et al. A weighted first-order formulation for solving anisotropic diffusion equations with deep neural networks[DB/OL]. arXiv(2022-04-29). https://arxiv.org/abs/2205.06658.
|
31 |
|
[1] | Shi SHU, Xiaoqiang YUE, Jianmeng HE, Xiaowen XU, Zeyao MO. Feature-driven Parallel Algebraic Multigrid Methods for Multi-group Radiation Diffusion Problems [J]. Chinese Journal of Computational Physics, 2024, 41(1): 87-97. |
[2] | Shuting FENG, Houping DAI, Tongzheng SONG. Lattice Boltzmann Method for Two-dimensional Fractional Reaction-Diffusion Equations [J]. Chinese Journal of Computational Physics, 2022, 39(6): 666-676. |
[3] | Xiaoyan HU, Zhengfeng FAN. An Efficient Parallel Algorithm on Multi-block Structure Meshes for Radiation Diffusion in Inertial Confinement Fusion Implosion [J]. Chinese Journal of Computational Physics, 2022, 39(3): 277-285. |
[4] | Shuxian ZHANG, Xudeng HANG. Applications of Local Maximum-principle-preserving Linear Vertex Scheme of Second Order Convergence for Two-dimensional Diffusion Equations [J]. Chinese Journal of Computational Physics, 2022, 39(1): 17-32. |
[5] | Xuedan WEI, Houping DAI, Mengjun LI, Zhoushun ZHENG. Lattice Boltzmann Method for One-dimensional Riesz Spatial Fractional Convection-Diffusion Equations [J]. Chinese Journal of Computational Physics, 2021, 38(6): 683-692. |
[6] | Jia ZHANG, Shiqing CHENG, Yang ZENG, Man ZHANG, Haiyang YU. Applicability Exploration of Superposition Principle for Pressure Transient Analysis in Polymer-flooding System [J]. Chinese Journal of Computational Physics, 2021, 38(3): 324-332. |
[7] | XU Jinjing, YUAN Guangwei. Vertex Interpolation Methods for Nine-point Scheme on Multi-flow-tube Meshes [J]. Chinese Journal of Computational Physics, 2021, 38(2): 153-164. |
[8] | ZHAO Fei, SHENG Zhiqiang, YUAN Guangwei. A Positivity-preserving Finite Volume Scheme Based on Second-order Scheme [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 37(4): 379-392. |
[9] | ZHU Xiaogang, NIE Yufeng, WANG Jungang, YUAN Zhanbin. A Characteristic Finite Element Method for Fractional Convection-Diffusion Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(4): 417-424. |
[10] | GUO Shaodong, ZHANG Mingyu, ZHOU Haibing, XIONG Jun, ZHANG Shudao. Solving Diffusion Equation on Three-Dimensional Non-Conformal Mesh [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 34(1): 19-28. |
[11] | LV Guixia, SUN Shunkai. A Finite Directional Difference Meshless Method for Diffusion Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 32(6): 649-661. |
[12] | SHU Shi, YUE Xiaoqiang, ZHOU Zhiyang, XU Xiaowen. Approximation and Two-level Algorithm of Finite Volume Schemes for Diffusion Equations with Structured AMR [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 31(4): 390-402. |
[13] | DENG Zhihong, SUN Yuliang, LI Fu, Rizwan-uddin. Modified Nodal Expansion Method for Convection-diffusion Equation in Cylindrical Geometry [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 30(4): 475-482. |
[14] | ZENG Fanhai, LI Changpin. High-order Finite Difference Methods for Time-fractional Subdiffusion Equation [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 30(4): 491-500. |
[15] | HANG Xudeng, LI Jinghong, YUAN Guangwei. Convergence Analysis on Splitting Iterative Solution of Multi-group Radiation Diffusion Equations [J]. CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 30(1): 111-119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © Chinese Journal of Computational Physics
E-mail: jswl@iapcm.ac.cn
Supported by Beijing Magtech Co., Ltd.