导航切换
CJCP
Home
About Journal
About Journal
Information
Aims & Scopes
Journal History
Editorial Board
Editorial Board
Successive Editorial Board
Authors
Guidelines for Authors
Authors Login
Download
Online First
Reviewers
Peer Review
Editor Work
Editor-in-chief
Guidelines for Reviewers
FAQ
FAQ
Contacts us
中文
Journals
Publication Years
Keywords
Search within results
(((CHEN Yuling[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
Title
Author
Institution
Keyword
Abstract
PACS
DOI
Please wait a minute...
For Selected:
Download Citations
EndNote
Ris
BibTeX
Toggle Thumbnails
Select
Extreme Value Statistics of Growth Surfaces in (1+1)-dimensional Wolf-Villain Model
WEN Rongji, TANG Gang, HAN Kui, XIA Hui, HAO Dapeng, XUN Zhipeng, CHEN Yuling
CHINESE JOURNAL OF COMPUTATIONAL PHYSICS 2011, 28 (
6
): 933-941.
Abstract
(
296
)
PDF
(455KB)(
1004
)
Knowledge map
In order to study statistical properties of surface fluctuation in a Wolf-Villain(WV) model。maximal-and minimal-heigIlt distributions(MAHD and MIHD) of saturated surfaces in a(1+1)-dimensional WV model are investigated with theory of extreme value statistics.It shows that both MAHD and MIHD csn be fitted well with universal functions of different system sizes.They are asymmetrical.MAHD takes on a generalized Fisher-Tippett-Gumbel(FTG) distribution,a typical extreme value distribution function.MIHD,however,displays a slightly different distribution,a modified FTG distribution.
Related Articles
|
Metrics
Select
Numerical Study on Roughness Distributions of 1+1 Dimensional Noisy Kuramoto-Sivashinsky Equation
YANG Xiquan, TANG Gang, HAN Kui, XIA Hui, HAO Dapeng, XUN Zhipeng, ZHOU Wei, WEN Rongji, CHEN Yuling, WANG Juan
CHINESE JOURNAL OF COMPUTATIONAL PHYSICS 2011, 28 (
1
): 125-130.
Abstract
(
240
)
PDF
(351KB)(
1121
)
Knowledge map
Roughness distributions of 1+1 dimensional noisy Kuramoto-Sivashinsky(KS) equation at steady states are obtained and compared with Kardar-Parisi-Zhang(KPZ) equation's with numerical simulation.It is shown that the scaling functions of roughness distributions of the noise KS equation in 1+1 dimensions show small finite-size effects.They are in good agreement with the Kardar-Parisi-Zhang(KPZ) equation's.
Related Articles
|
Metrics