导航切换
CJCP
Home
About Journal
About Journal
Information
Aims & Scopes
Journal History
Editorial Board
Editorial Board
Successive Editorial Board
Authors
Guidelines for Authors
Authors Login
Download
Online First
Reviewers
Peer Review
Editor Work
Editor-in-chief
Guidelines for Reviewers
FAQ
FAQ
Contacts us
中文
Journals
Publication Years
Keywords
Search within results
(((ZOU Shiyang[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
Title
Author
Institution
Keyword
Abstract
PACS
DOI
Please wait a minute...
For Selected:
Download Citations
EndNote
Ris
BibTeX
Toggle Thumbnails
Select
Influence of Capsule Support Tent on ICF Capsule Implosion Performance: Simulation Study
GU Jianfa, GE Fengjun, DAI Zhensheng, ZOU Shiyang
CHINESE JOURNAL OF COMPUTATIONAL PHYSICS 2020, 37 (
6
): 631-638. DOI:
10.19596/j.cnki.1001-246x.8167
Abstract
(
433
)
HTML
(
8
)
PDF
(9065KB)(
1503
)
Knowledge map
Influence of capsule support tent on ICF DD gas implosion performance is investigated with a two-dimensional radiation diffusion hydrodynamic code LARED-S. It shows that the support tent reduces significantly the neutron yield with a YOC (yield over clean) of 55.2%. The main degradation mechanism is that the capsule shell produces high-amplitude high-density spikes, penetrating deep into the central DD gas. It increases greatly power loss due to electron conduction on the CH/DD interface, leading to the rapid reduction of DD reaction rate and final neutron yield. Compared with one-dimensional ideal implosion simulation result, bang-time of the two-dimensional tent simulation is apparently earlier, and perturbations introduced by the capsule support tent reduce the central pressure and internal energy of DD gas, which is converted from the shell implosion kinetic energy.
Reference
|
Related Articles
|
Metrics
Select
Simulations of Mode-Mode Coupling Between Drive Asymmetry and Outer Surface Roughness in Ignition Capsule Implosion
GU Jianfa, DAI Zhensheng, GU Peijun, YE Wenhua, ZHENG Wudi, ZOU Shiyang
CHINESE JOURNAL OF COMPUTATIONAL PHYSICS 2016, 33 (
6
): 645-651.
Abstract
(
519
)
HTML
(
1
)
PDF
(2915KB)(
1581
)
Knowledge map
We perform 2D ignition capsule implosion simulation by a 2D multi-group radiation diffusion hydrodynamic code LARED-S which simultaneously simulates radiation drive asymmetry and outer surface roughness. Implosion flow field shows large-amplitude spikes and bubbles as well as a significant low-mode shell areal density asymmetry. Amplitudes of modes generated by mode coupling are in good agreement with analytic mode coupling equation until perturbation amplitude of fundamental mode L24 is greater than nonlinear saturation amplitude. In deceleration phase, perturbation growth is in strong nonlinear phase, and strong mode coupling effects broaden mode distribution. High-density spikes are bent by vortex flow. Mode coupling degrades greatly implosion performance, leading to ignition failure. Further simulations of mode coupling between low-mode drive asymmetry and capsule surface roughness is critical for understanding influences of hydrodynamic instabilities on ignition capsule implosion.
Reference
|
Related Articles
|
Metrics
Select
2D-Simulation Design of an Ignition Hohlraum
LI Xin, WU Changshu, ZOU Shiyang, ZHAO Yiqing, LI Jinghong, GU Peijun, ZHENG Wudi, PEI Wenbing
CHINESE JOURNAL OF COMPUTATIONAL PHYSICS 2013, 30 (
3
): 371-378.
Abstract
(
356
)
PDF
(3324KB)(
1402
)
Knowledge map
We introduce an ignition hohlraum 2D-simulation design method with 2D code.A design sequence,in which X-rays drive tempetature is tuned before
P
2
asymmetry,is put forward.Details in designing laser power is studied.It indicates that control of
P
2
asymmetry during trough pulse limits the maximum of filling gas density and expansion of capsule ablator can be restrained by longer drive pulse.An ignition hohlraum 2D-simulation design is given.
Related Articles
|
Metrics