[1] WICHT J, TILGNER A. Theory and modeling of planetary dynamos[J]. Space Science Reviews, 2010, 152(1/4):501-542. [2] ROBERTS P H, KING E M. On the genesis of the Earth's magnetism[J]. Reports on Progress in Physics, 2013, 76(9):096801. [3] GLATZMAIER G A, ROBERTS P H. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal[J]. Nature, 1995, 377(6546):203-209. [4] KUANG W J, BLOXHAM J. An Earth-like numerical dynamo model[J]. Nature, 1997, 389(6649):371-374. [5] CHRISTENSEN U, OLSON P, GLATZMAIER G A. Numerical modelling of the geodynamo:A systematic parameter study[J]. Geophysical Journal International, 1999, 138(2):393-409. [6] VANTIEGHEM S, SHEYKO A, JACKSON A. Applications of a finite-volume algorithm for incompressible MHD problems[J]. Geophysical Journal International, 2016, 204(2):1376-1395. [7] KAGEYAMA A, YOSHIDA M. Geodynamo and mantle convection simulations on the Earth Simulator using the Yin-Yang grid[J]. Journal of Physics:Conference Series, 2005, 16:325-338. [8] HARDER H, HANSEN U. A finite-volume solution method for thermal convection and dynamo problems in spherical shells[J]. Geophysical Journal International, 2005, 161(2):522-532. [9] MATSUI H, OKUDA H. Thermal convection analysis in a rotating shell by a parallel finite-element method-development of a thermal-hydraulic subsystem of GeoFEM[J]. Concurrency and Computation:Practice and Experience, 2002, 14(6/7):465-481. [10] CHAN K H, LI L G, LIAO X H. Modelling the core convection using finite element and finite difference methods[J]. Physics of the Earth and Planetary Interiors, 2006, 157(1):124-138. [11] YIN L, YANG C, MA S Z, et al. Parallel numerical simulation of the thermal convection in the Earth's outer core on the cubed-sphere[J]. Geophysical Journal International, 2017, 209(3):1934-1954. [12] GLATZMAIER G A. Geodynamo simulations-how realistic are they?[J]. Annual Review of Earth and Planetary Sciences, 2002, 30(1):237-257. [13] MATSUI H, HEIEN E, AUBERT J, et al. Performance benchmarks for a next generation numerical dynamo model[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(5):1586-1607. [14] AURNOU J M, CALKINS M A, CHENG J S, et al. Rotating convective turbulence in Earth and planetary cores[J]. Physics of the Earth and Planetary Interiors, 2015, 246:52-71. [15] CHRISTENSEN U R, AUBERT J, CARDIN P, et al. A numerical dynamo benchmark[J]. Physics of the Earth and Planetary Interiors, 2001, 128(1):25-34. [16] HEJDA P, RESHETNYAK M. Control volume method for the thermal convection problem in a rotating spherical shell:Test on the benchmark solution[J]. Studia Geophysica et Geodaetica, 2004, 48(4):741-746. [17] SADOURNY R. Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids[J]. Monthly Weather Review, 1972, 100(2):136-144. [18] RONCHI C, IACONO R, PAOLUCCI P S. The "cubed sphere":A new method for the solution of partial differential equations in spherical geometry[J]. Journal of Computational Physics, 1996, 124(1):93-114. [19] NAIR R D, THOMAS S J, LOFT R D. A discontinuous Galerkin transport scheme on the cubed sphere[J]. Monthly Weather Review, 2005, 133(4):814-828. [20] ROSSMANITH J A. A wave propagation method for hyperbolic systems on the sphere[J]. Journal of Computational Physics, 2006, 213(2):629-658. [21] PUTMAN W M, LIN S J. Finite-volume transport on various cubed-sphere grids[J]. Journal of Computational Physics, 2007, 227(1):55-78. [22] CHEN C G, XIAO F. Shallow water model on cubed-sphere by multi-moment finite volume method[J]. Journal of Computational Physics, 2008, 227(10):5019-5044. [23] ULLRICH P A, JABLONOWSKI C, VAN LEER B. High-order finite-volume methods for the shallow-water equations on the sphere[J]. Journal of Computational Physics, 2010, 229(17):6104-6134. [24] YANG C, CAO J W, CAI X C. A fully implicit domain decomposition algorithm for shallow water equations on the cubed-sphere[J]. SIAM Journal on Scientific Computing, 2010, 32(1):418-438. [25] YANG C, CAI X C. A parallel well-balanced finite volume method for shallow water equations with topography on the cubed-sphere[J]. Journal of Computational and Applied Mathematics, 2011, 235(18):5357-5366. [26] YANG C, CAI X C. Parallel multilevel methods for implicit solution of shallow water equations with nonsmooth topography on the cubed-sphere[J]. Journal of Computational Physics, 2011, 230(7):2523-2539. [27] CHOBLET G. Modelling thermal convection with large viscosity gradients in one block of the ‘cubed sphere’[J]. Journal of Computational Physics, 2005, 205(1):269-291. [28] IVAN L, DE STERCK H, NORTHRUP S A, et al. Multi-dimensional finite-volume scheme for hyperbolic conservation laws on three-dimensional solution-adaptive cubed-sphere grids[J]. Journal of Computational Physics, 2013, 255:205-227. [29] IVAN L, DE STERCK H, SUSANTO A, et al. High-order central ENO finite-volume scheme for hyperbolic conservation laws on three-dimensional cubed-sphere grids[J]. Journal of Computational Physics, 2015, 282:157-182. [30] LIU J, HU Q F, HAN G X, et al. Numerical parallel computing of unbalanced stiff equations in distributed memory environments[J]. Chinese J Comput Phys, 2002, 19(1):86-88. [31] XU X W, MO Z Y. Scalability analysis for parallel algebraic multigrid algorithms[J]. Chinese J Comput Phys, 2007, 24(4):387-394. [32] CAO J W, XU X, WANG Y N. Parallel algorithms for separable elliptic equation based on GPU[J]. Chinese J Comput Phys, 2015, 32(4):475-481. [33] 谷同祥, 等. 迭代方法和预处理技术[M]. 北京:科学出版社, 2015. [34] DEMMEL J W. Applied numerical linear algebra[M]. SIAM, 1997. [35] SAAD Y. Iterative methods for sparse linear systems[M]. 2nd ed. SIAM, 2003. [36] DUKOWICZ J K, DVINSKY A S. Approximate factorization as a high order splitting for the implicit incompressible flow equations[J]. Journal of Computational Physics, 1992, 102(2):336-347. [37] TOSELLI A, WIDLUND O B. Domain decomposition methods-algorithms and theory[M]. Springer, 2005. [38] CAI X C, KEYES D E, VENKATAKRISHNAN V. Newton-Krylov-Schwarz:An implict solver for CFD[M]. Institute for Computer Applications in Science and Engineering (ICASE), 1995. [39] CAI X C, SARKIS M. A restricted additive Schwarz preconditioner for general sparse linear systems[J]. SIAM Journal on Scientific Computing, 1999, 21(2):792-797. [40] MANDEL J. Hybrid domain decomposition with unstructured subdomains[C]//Domain Decomposition Methods in Science and Engineering:The Sixth International Conference on Domain Decomposition, Contemporary Mathematics, 1994, 157:103-112. [41] BALAY S, BROWN J, BUSCHELMAN K, et al. PETSc users manual revision 3.4[R]. Argonne National Lab, 2013. [42] FU H H, LIAO J F, YANG J Z, et al. The Sunway TaihuLight supercomputer:System and applications[J]. Science China Information Sciences, 2016, 59:1-16. |