[1] 肖海涛, 祁海鹰, 由长福, 等. 一个气固两相流动阻力的新模型[J]. 化工学报, 2003, 54(3):311-315. [2] 陈程, 祁海鹰. EMMS曳力模型及其颗粒团模型的构建和检验[J]. 化工学报, 2014, 65(6):2003-2012. [3] HU H H. Direct simulation of flows of solid-liquid mixtures[J]. International Journal of Multiphase Flow, 1996, 22(2):335-352. [4] HU H H, JOSEPH D D, CROCHET M J. Direct simulation of fluid particle motions[J]. Theoretical and Computational Fluid Dynamics, 1992, 3(5):285-306. [5] HU H H, PATANKAR N A, ZHU M Y. Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique[J]. Journal of Computational Physics, 2001, 169(2):427-462. [6] WANG L, PERSSON P O. A discontinuous Galerkin method for the Navier-Stokes equations on deforming domains using unstructured moving space-time meshes[C]//21st AIAA Computational Fluid Dynamics Conference, 2013:2833. [7] LOMTEV I, KIRBY R M, KARNIADAKIS G E. A discontinuous Galerkin ALE method for compressible viscous flows in moving domains[J]. Journal of Computational Physics, 1999, 155(1):128-159. [8] PERSSON P O, BONET J, PERAIRE J. Discontinuous Galerkin solution of the Navier-Stokes equations on deformable domains[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(17-20):1585-1595. [9] MINOLI C A A, KOPRIVA D A. Discontinuous Galerkin spectral element approximations on moving meshes[J]. Journal of Computational Physics, 2011, 230(5):1876-1902. [10] YU M L, WANG Z J, HU H. A high-order spectral difference method for unstructured dynamic grids[J]. Computers & Fluids, 2011, 48(1):84-97. [11] OU K, CASTONGUAY P, JAMESON A. 3D flapping wing simulation with high order spectral difference method on deformable mesh[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2011:1316. [12] PESKIN C S. Flow patterns around heart valves:A numerical method[J]. Journal of Computational Physics, 1972, 10(2):252-271. [13] GLOWINSKI R, PAN T W, HESLA T I, et al. A distributed Lagrange multiplier/fictitious domain method for particulate flows[J]. International Journal of Multiphase Flow, 1999, 25(5):755-794. [14] MOHD-YUSOF J. For simulations of flow in complex geometries[J]. Annual Research Briefs, 1997, 317. [15] FADLUN E A, VERZICCO R, ORLANDI P, et al. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations[J]. Journal of Computational Physics, 2000, 161(1):35-60. [16] VERZICCO R, MOHD-YUSOF J, ORLANDI P, et al. LES in complex geometries using boundary body forces[J]. Center for Turbulence Research Proceedings of the Summer Program, NASA Ames=Stanford University, 1998:171-186. [17] UHLMANN M. An immersed boundary method with direct forcing for the simulation of particulate flows[J]. Journal of Computational Physics, 2005, 209(2):448-476. [18] GLOWINSKI R, PAN T, PERIAUX J. A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 112(1-4):133-148. [19] GLOWINSKI R, PAN T, PERIAUX J. A fictitious domain method for Dirichlet problem and applications[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 111(3-4):283-303. [20] GLOWINSKI R, PAN T, PERIAUX J. A Lagrange multiplier/fictitious domain method for the numerical simulation of incompressible viscous flow around moving rigid bodies:(I) Case where the rigid body motions are known a priori[J]. Comptes Rendus de l'Académie des Sciences-Series I:Mathematics, 1997, 324(3):361-369. [21] BERTRAND F, TANGUY P A, THIBAULT F. A three-dimensional fictitious domain method for incompressible fluid flow problems[J]. International Journal for Numerical Methods in Fluids, 1997, 25(6):719-736. [22] TANGUY P A, BERTRAND F, LABRIE R, et al. Numerical modeling of the mixing of viscoplastic slurries in a twin-blade planetary mixer[J]. Chemical Engineering Research & Design, 1996, 74(4):499-504. [23] UHLMANN M. First experiments with the simulation of particulate flows[R]. Centro de Investigaciones Energeticas, 2003. [24] NANGIA N, JOHANSEN H, PATANKAR N A, et al. A moving control volume approach to computing hydrodynamic forces and torques on immersed bodies[J]. Journal of Computational Physics, 2017, 347:437-462. [25] SIERAKOWSKI A J, PROSPERETTI A. Resolved-particle simulation by the Physalis method:Enhancements and new capabilities[J]. Journal of Computational Physics, 2016, 309:164-184. [26] FEDKIW S O R, OSHER S. Level set methods and dynamic implicit surfaces[J]. Surfaces, 2002, 44:77. [27] GUO H P, OUYANG J. Simulation of gas-liquid two-phase flows with discontinuous Galerkin method[J]. Chinese Journal of Computational Physics, 2015, 32(2):160-168. [28] LIU S Q, OUYANG J, RUAN C L. Discontinuous Galerkin method for level set equation on unstructured grids[J]. Chinese Journal of Computational Physics, 2011, 28(5):649-658. [29] APTE S V, MARTIN M, PATANKAR N A. A numerical method for fully resolved simulation (FRS) of rigid particle-flow interactions in complex flows[J]. Journal of Computational Physics, 2009, 228(8):2712-2738. [30] APTE S V, FINN J R. A variable-density fictitious domain method for particulate flows with broad range of particle-fluid density ratios[J]. Journal of Computational Physics, 2013, 243:109-129. [31] GHASEMI A, PATHAK A, RAESSI M. Computational simulation of the interactions between moving rigid bodies and incompressible two-fluid flows[J]. Computers & Fluids, 2014, 94:1-13. [32] HAERI S, SHRIMPTON J S. A new implicit fictitious domain method for the simulation of flow in complex geometries with heat transfer[J]. Journal of Computational Physics, 2013, 237:21-45. [33] PATANKAR S. Numerical heat transfer and fluid flow[M]. CRC Press, 1980. [34] PLACZEK A, SIGRIST J F, HAMDOUNI A. Numerical simulation of an oscillating cylinder in a cross-flow at low Reynolds number:Forced and free oscillations[J]. Computers & Fluids, 2009, 38(1):80-100. [35] FOX R W, MCDONALD A T, PRITCHARD P J. Introduction to fluid dynamics[M]. New York:John Wiley and Sons, 1985:354. |