[1] HERZFELD K F, LITOVITZ T A. Absorption and dispersion of ultrasonic waves[M]. New York:Academic, 1959. [2] LAMBERT J D. Vibrational and rotational relaxation in gases[M]. Oxford:Clarendon, 1977. [3] BHATIA A B. Ultrasonic absorption[M]. New York:Dover, 1985. [4] COTTET A, NEUMEIER Y, SCARBOROUGH D, et al. Acoustic absorption measurements for characterization of gas mixing[J]. J Acoust Soc Am, 2004, 116:2081-2088. [5] CARLSON J E, CARLSON R. Prediction of molar fractions in two-component gas mixtures using pulse-echo ultrasound and PLS regression[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2006, 53:606-613. [6] PETCULESCU A G. Future trends in acoustic gas monitoring and sensing[J]. Journal of Optoelectronics and Advanced Materials, 2006, 8(1):217-221. [7] ZHU M, WANG S, WANG S T, et al. An acoustic gas concentration measurement algorithm for carbon monoxide in mixtures based on molecular multi-relaxation mode[J]. Acta Physica Sinica, 2008, 57(9):5749-5755. [8] HU Y, WANG S, ZHU M, ZHANG K S, et al. Acoustic absorption spectral peak location for gas detection[J]. Sens Actuators B:Chem, 2014, 203:1-8. [9] ZHANG K S, CHEN L K, OU W H, et al. A theory for monitoring combustion of natural gas based on the maximum point in sound absorption spectrum[J]. Acta Physica Sinica, 2015, 64(5):054302-1~8. [10] LIU Y, LIU S, LEI J, et al. An algorithm for multi-physics field reconstruction based on molecular relaxation model of mixtures[J]. Chinese Journal of Computational Physics, 2014, 31(01):67-74. [11] PETCULESCU A G, LUEPTOW R M. Quantitative acoustic relaxational spectroscopy for real-time monitoring of natural gas:A perspective on its potential[J]. Sensors and Actuators B:Chemical, 2012, 169(1):121-127. [12] PETCULESCU A G, HALL B, FRAENZLE R, et al. A prototype acoustic gas sensor based on attenuation[J]. J Acoust Soc Am, 2006, 120(4):1779-1782. [13] HU Y, WANG S, ZHU M. A relaxation times coupling method to construct acoustic relaxation calibration for two-frequency measuring gas compositions[J]. Applied Acoustics, 2016, 113:102-108. [14] ZHANG K S, WANG S, ZHU M, et al. Analytical model for acoustic multi-relaxation spectrum in gas mixtures[J]. Acta Physica Sinica, 2012, 61(17):174301-1~11. [15] ZHANG K S, WANG S, ZHU M, et al. Decoupling multimode vibrational relaxations in multicomponent gas mixtures:Analysis of sound relaxational absorption spectra[J]. Chinese Physics B, 2013, 22(1):014305-1~10. [16] ZHU M, LIU T T, WANG S, ZHANG K S. Capturing the molecular multimode relaxation processes in excitable gases based on decomposition of acoustic relaxation spectra[J]. Measurement Science and Technology, 2017, 28(8):085008-1~9. [17] KNESER H O. Relaxation processes in gases in physical acoustics Vol Ⅱ[M]. MASON W P, ed. New York:Academic, 1965:133-199. [18] SHIELDS F D. On obtaining transition rates from sound absorption and dispersion curves[J]. J Acoust Soc Am, 1970, 47(5B):1262-1268. [19] ZUCKERWAR A J, MEREDITH R W. Acoustical measurements of vibrational relaxation in moist N2 at elevated temperatures[J]. J Acoust Soc Am, 1982, 71(1):67-73. [20] ZHANG K S, WANG S, ZHU M, DING Y. Algorithm for capturing primary relaxation processes in excitable gases by two-frequency acoustic measurements[J]. Measurement Science and Technology, 2013, 24(5):055002-1~8. [21] LANDAU L, TELLER E. Zurtheorie der schalldispersion[J]. Phys Z Sowjetunion, 1936, 10(1):34-43. [22] KNESER H O. The interpretation of the anomalous sound absorption in air and oxygen in terms of molecular collisions[J]. J Acoust Soc Am, 1933, 5(2):122-126. [23] SCHWARTZ R N, SLAWSKY Z I, HERZFELD K F. Calculation of vibrational relaxation times in gases[J]. J Chem Phys, 1952, 20(10):1591-1600. [24] TANZCOS F. Calculation of vibrational relaxation times of the chloromethanes[J]. J Chem Phys, 1956, 25(3):439-447. [25] BAUER H J. SHIELDS F D, BASS H E. Multimode vibrational relaxation in polyatomic molecules[J]. J Chem Phys, 1972, 57(11):4624-4628. [26] DAIN Y, LUEPTOW R M. Acoustic attenuation in three-component gas mixtures:Theory[J]. J Acoust Soc Am, 2001, 109(5):1955-196. [27] DAIN Y, LUEPTOW R M. Acoustic attenuation in a three-gas mixture:Results[J]. J Acoust Soc Am, 2001, 110(6):2974-2979. [28] PETCULESCU A G, LUEPTOW R M. Fine-tuning molecular acoustic models:Sensitivity of the predicted attenuation to the Lennard-Jones parameters[J]. J Acoust Soc Am, 2005, 117(1):175-184. [29] ZHANG K S, DING Y, ZHU M, et al. Calculating vibrational mode contributions to sound absorption in excitable gas mixtures by decomposing multi-relaxation absorption spectroscopy[J]. Applied Acoustics, 2017, 116(15):195-204. [30] ZHANG K S, ZHU M, TANG W Y, et al. Algorithm for reconstructing vibrational relaxation times in excitable gases by two-frequency acoustic measurements[J]. Acta Physica Sinica, 2016, 65(13):134302-1~9. [31] PETCULESCU A G, LUEPTOW R M. Synthesizing primary molecular relaxation processes in excitable gases using a two-frequency reconstructive algorithm[J]. Physical Review Letters, 2005, 94(23):238301-1~4. [32] HOLMAN J P. Thermodynamics[M]. New York:McGraw-Hill, 1980. [33] ZHANG Y, SONG H. Vibration-vibration relaxation of UF6 vibrationally excited molecules[J]. Chinese Journal of Computational Physics, 2014, 31(02):230-236. [34] WANG R, AN L, SHEN G, et al. Three-dimensional temperature field reconstruction with acoustics based on regularized SVD algorithm[J]. Chinese Journal of Computational Physics, 2015, 32(02):195-201. [35] EJAKOV S G, PHILLIPS S, DAIN Y, et al. Acoustic attenuation in gas mixtures with nitrogen:Experimental data and calculations[J]. J Acoust Soc Am, 2003, 113(4):1871-187. |